福建省福州永泰第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第1页
福建省福州永泰第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第2页
福建省福州永泰第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第3页
福建省福州永泰第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第4页
福建省福州永泰第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知实数,满足,则函数零点所在区间是()A. B.C. D.2.已知与分别是函数与的零点,则的值为A. B.C.4 D.53.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R4.函数在的图象大致为()A. B.C. D.5.平行四边形中,,,,点满足,则A.1 B.C.4 D.6.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.7.函数f(x)=lnx+3x-7的零点所在的区间是()A. B.C. D.8.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.9.已知,则下列不等式一定成立的是()A. B.C. D.10.已知点,.若过点的直线l与线段相交,则直线的斜率k的取值范围是()A. B.C.或 D.11.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位12.如图是函数的部分图象,则下列说法正确的是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.14.已知,,,则___________.15.已知函数,的值域为,则实数的取值范围为__________.16.已知函数部分图象如图所示,则函数的解析式为:____________三、解答题(本大题共6小题,共70分)17.已知函数(1)求的最小正周期;(2)求的单调递增区间18.已知函数(1)求函数的零点;(2)若实数满足,求的取值范围.19.如图,以轴的非负半轴为始边作角与,它们的终边分别与单位圆相交于点,已知点的横坐标为(1)求的值;(2)若,求的值20.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水面的高度为h(单位:)(在水面下则h为负数).(1)求点P距离水面的高度为h关于时间为t的函数解析式;(2)求点P第一次到达最高点需要的时间(单位:).21.已知函数=(1)判断的奇偶性;(2)求在的值域22.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润销售收入总成本);(2)工厂生产多少台产品时,可使盈利最多?

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.2、D【解析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选D【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.3、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理4、A【解析】根据函数解析式,结合特殊值,即可判断函数图象.【详解】设,则,故为上的偶函数,故排除B又,,排除C、D故选:A.【点睛】本题考查图象识别,注意从函数的奇偶性、单调性和特殊点函数值的正负等方面去判断,本题属于中档题.5、B【解析】选取,为基向量,将,用基向量表示后,再利用平面向量数量积的运算法则求解数量积.【详解】,,,故选B【点睛】本题考查了平面向量的运算法则以及向量数量积的性质及其运算,属中档题.向量的运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).6、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.7、C【解析】由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间【详解】∵函数f(x)=lnx+3x-7在其定义域上单调递增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),故选C【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题8、D【解析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.9、B【解析】对于ACD,举例判断,对于B,分两种情况判断详解】对于A,若时,满足,而不满足,所以A错误,对于B,当时,则一定成立,当时,由,得,则,所以B正确,对于C,若时,满足,而不满足,所以C错误,对于D,若时,则满足,而不满足,所以D错误,故选:B10、D【解析】由已知直线恒过定点,如图若与线段相交,则,∵,,∴,故选D.11、C【解析】化函数解析式为,再由图象平移的概念可得【详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为12、A【解析】先通过观察图像可得A和周期,根据周期公式可求出,再代入最高点坐标可得.【详解】由图像得,,则,,,得,又,.故选:A.二、填空题(本大题共4小题,共20分)13、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.14、【解析】由已知条件结合所给角的范围求出、,再将展开即可求解【详解】因为,所以,又因为,所以,所以,因为,,所以,因为,所以,所以,故答案为:.【点睛】关键点点睛:本题解题的关键点是由已知角的三角函数值的符号确定角的范围进而可求角的正弦或余弦,将所求的角用已知角表示即.15、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:16、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)单调递增区间是【解析】(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.【小问1详解】∵,∴最小正周期【小问2详解】令,解得,∴的单调递增区间是18、(1)零点为;(2).【解析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案;(2)分析函数的奇偶性和单调性,进而可将不等式化为,解得的取值范围【详解】(1),或,函数的零点为;(2)当时,,此时,当时,,同理,,故函数为偶函数,又时,为增函数,(2)时,(2),即,,,综上所述,的取值范围是.【点睛】关键点点睛:(1)函数的零点即相应方程的根;(2)处理抽象不等式要充分利用函数的单调性与奇偶性去掉绝对值,转化为具体的不等式.19、(1);(2).【解析】(1)根据三角函数的定义,求三角函数,代入求值;(2)由条件可知,,利用诱导公式,结合三角函数的定义,求函数值.【小问1详解】的横坐标为,.【小问2详解】由题可得,,.20、(1),(t≥0)(2)【解析】(1)根据题意,建立函数关系式;(2)直接解方程即可求解.【小问1详解】盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为,则点离水面的高度,(t≥0).【小问2详解】令,得,得,,得,,因为点P第一次到达最高点,所以,所以.21、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论