新疆昌吉市第九中学2022-2023学年数学高一上期末教学质量检测模拟试题含解析_第1页
新疆昌吉市第九中学2022-2023学年数学高一上期末教学质量检测模拟试题含解析_第2页
新疆昌吉市第九中学2022-2023学年数学高一上期末教学质量检测模拟试题含解析_第3页
新疆昌吉市第九中学2022-2023学年数学高一上期末教学质量检测模拟试题含解析_第4页
新疆昌吉市第九中学2022-2023学年数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,下列区间中包含零点的区间是()A. B.C. D.2.已知,,,则a、b、c大小关系为()A. B.C. D.3.函数f(x)=+的定义域为()A. B.C. D.4.若,,,,则()A. B.C. D.5.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-46.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.7.已知向量,,若,则()A. B.C.2 D.38.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则()A.0 B.1C.7 D.89.若,则关于的不等式的解集是()A. B.或C.或 D.10.若,则的值是()A. B.C. D.1二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.12.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________13.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.14.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.15.已知幂函数的图象过点,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设函数f(1)求函数fx(2)求函数fx(3)求函数fx在闭区间0,π217.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.18.如图,在正方体中,点分别是棱的中点.求证:(1)平面;(2)平面19.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图(1)所示;B产品的利润y与投资x的算术平方根成正比,其关系如图(2)所示(注:利润y与投资x的单位均为万元)(1)分别求A,B两种产品的利润y关于投资x的函数解析式;(2)已知该企业已筹集到200万元资金,并将全部投入A,B两种产品的生产①若将200万元资金平均投入两种产品的生产,可获得总利润多少万元?②如果你是厂长,怎样分配这200万元资金,可使该企业获得总利润最大?其最大利润为多少万元?20.已知集合,,.(1)求,;(2)若,求实数的取值范围.21.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据函数零点的存在性定理,求得,即可得到答案.【详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.2、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C3、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.4、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.5、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.6、A【解析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A7、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A8、D【解析】根据函数的新定义求解即可.【详解】由题意可知4-(-4)=8.故选:D.9、D【解析】判断出,再利用一元二次不等式的解法即可求解.【详解】因,所以,即.所以,解得.故选:D【点睛】本题考查了一元二次不等式的解法,考查了基本运算求解能力,属于简单题.10、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③12、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.13、【解析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.14、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%15、##0.25【解析】设,代入点求解即可.【详解】设幂函数,因为的图象过点,所以,解得所以,得.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)π(2)π3+kπ,(3)fx在0,π2内的最大值为【解析】(1)利用三角恒等变换化简可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小问1详解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函数f(x)的最小正周期为T=2π2=【小问2详解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函数f(x)的单调递减间为π3+kπ,【小问3详解】因为0≤x≤π2,-π6≤2x-π6≤当2x-π6=π2时,即x=π3时,f(x17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【点睛】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.18、(1)证明见解析(2)证明见解析【解析】(1)易证得四边形为平行四边形,可知,由线面平行的判定可得结论;(2)由正方形性质和线面垂直性质可证得,,由线面垂直的判定可得平面,由可得结论.【小问1详解】分别为的中点,,,且,四边形为平行四边形,,又平面,平面,平面.【小问2详解】四边形为正方形,;平面,平面,,又,平面,19、(1)A产品的利润y关于投资x的函数解析式为:;B产品的利润y关于投资x的函数解析式为:.(2)①万元;②当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元.【解析】(1)利用待定系数法,结合函数图象上特殊点,运用代入法进行求解即可;(2)①:利用代入法进行求解即可;②利用换元法,结合二次函数的单调性进行求解即可.【小问1详解】因为A产品的利润y与投资x成正比,所以设,由函数图象可知,当时,,所以有,所以;因为B产品的利润y与投资x的算术平方根成正比,所以设,由函数图象可知:当时,,所以有,所以;【小问2详解】①:将200万元资金平均投入两种产品的生产,所以A产品的利润为,B产品的利润为,所以获得总利润为万元;②:设投入B产品的资金为万元,则投入A产品的资金为万元,设企业获得的总利润为万元,所以,令,所以,当时,即当时,有最大值,最大值为,所以当投入B产品的资金为万元,投入A产品的资金为万元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论