




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15/162022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.2.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.23.函数(为自然对数的底)的零点所在的区间为A. B.C. D.4.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.5.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或6.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为7.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)8.“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件9.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)10.已知,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.12.函数的一个零点是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知角的终边过点,则______14.函数单调递增区间为_____________15.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为______16.已知,则的最小值为_______________.三、解答题(本大题共6小题,共70分)17.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.18.已知.(1)求,的值;(2)求的值.19.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.20.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围21.设是定义在上的奇函数,且当时,.(1)求当时,的解析式;(2)请问是否存在这样的正数,,当时,,且的值域为?若存在,求出,的值;若不存在,请说明理由.22.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t取值范围
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B2、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.3、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.4、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.5、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.6、B【解析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.7、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.8、A【解析】利用充分条件和必要条件的定义分析判断即可【详解】当时,,当时,或,所以“”是“”的充分非必要条件,故选:A9、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10、C【解析】根据充分条件和必要条件定义结合不等式的性质即可判断.【详解】若,则,所以充分性成立,若,则,所以必要性成立,所以“”是“”的充分必要条件,故选:C.11、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B12、B【解析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【详解】解:令函数,则,则,当时,.故选:B二、填空题(本大题共4小题,共20分)13、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.14、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:15、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,,在上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期16、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1).(2).(3)【解析】(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由,得,解得(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0即log2(a)=log2[(a﹣4)x+2a﹣5],即a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x,若x=﹣1是方程①的解,则a=a﹣1>0,即a>1,若x是方程①的解,则a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(a)﹣log2(a)≤1,即a≤2(a),即a设1﹣t=r,则0≤r,,当r=0时,0,当0<r时,,∵y=r在(0,)上递减,∴r,∴,∴实数a的取值范围是a【一题多解】(3)还可采用:当时,,,所以在上单调递减则函数在区间上的最大值与最小值分别为,即,对任意成立因为,所以函数在区间上单调递增,时,有最小值,由,得故的取值范围为18、(1),(2)【解析】(1)根据同角三角函数关系得到余弦值,正切值,利用二倍角公式求得;(2)在第一问的基础上,利用余弦的差角公式进行求解.【小问1详解】∵,且,∴,∴,.【小问2详解】19、(1)(2)【解析】(1)由奇函数的定义可得,即,化简即可得答案;(2)原问题等价于,从而有函数的值域即为的范围.小问1详解】解:因函数为奇函数,所以,即,所以,因为在上单调递增,所以,即,解得;【小问2详解】解:,由题意,,即,因为,所以,所以,又在上单调递增,所以,所以的范围为.20、(1)(2)【解析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为21、(1)当时,(2),【解析】(1)根据函数的奇偶性,求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为是方程的两个根的问题,进而解方程即可得答案.【详解】(1)当时,,于是.因为是定义在上的奇函数,所以,即.(2)假设存在正实数,当时,且的值域为,根据题意,,因为,则,得.又函数在上是减函数,所以,由此得到:是方程的两个根,解方程求得所以,存在正实数,当时,且的值域为22、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议书:共同财产分割、子女抚养及股权代持协议
- 章希与张伟婚姻解除协议书
- 离婚协议书范本:共同财产分割与债务分担
- 离婚协议书中车辆产权与使用权限明确约定
- 第21课 小圣施威降大圣 课时练01(含答案)
- 美术老师转岗培训
- 培训经理年终述职汇报大纲
- 监理单位安全培训
- 如何放松自己
- 边境管控工作课件
- 2025-2026学年人教版(2024)小学美术二年级上册(全册)教学设计(附目录P144)
- 智慧校园建设“十五五”发展规划
- 流管专员笔试题目及答案
- DBJ15 31-2016建筑地基基础设计规范(广东省标准)
- 第2课《树立科学的世界观》第2框《用科学世界观指导人生发展》-【中职专用】《哲学与人生》同步课堂课件
- 《照明线路安装与检修》一体化课件-第一章 职业感知与安全用电
- 2020年春统编版四年级语文下册第16课《海上日出》教学设计
- 自学考试国际商务谈判笔记精华
- 印制电路板(PCB)的设计与制作课件
- 文化差异与跨文化交际课件(完整版)
- 苏教版五年级数学上册第二单元《多边形的面积》教材分析(集体备课定稿)
评论
0/150
提交评论