




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15/152022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}2.已知两个正实数,满足,则的最小值是()A. B.C.8 D.33.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.4.函数的定义域是A. B.C. D.5.命题“,使得”的否定是()A., B.,C., D.,6.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.7.下列六个关系式:⑴其中正确的个数为()A.6个 B.5个C.4个 D.少于4个8.已知集合,,则()A. B.C. D.9.已知,则的最小值是()A.2 B.C.4 D.10.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥体积为定值D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:12.若则______13.__________14.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____15.设向量不平行,向量与平行,则实数_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.若函数是奇函数(),且,.(1)求实数,,的值;(2)判断函数在上的单调性,并利用函数单调性的定义证明.17.已知函数(1)若,成立,求实数的取值范围;(2)证明:有且只有一个零点,且18.已知函数(1)求函数的最小正周期及函数的单调递增区间;(2)求函数在上的值域19.已知函数fx(1)求函数fx(2)判断函数fx(3)判断函数fx在区间0,1上的单调性,并用定义证明20.已知集合,,.(1)当时,求;(2)当时,求实数的值.21.化简求值:(1);(2)已知,求的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解2、A【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,则,当且仅当,即时,等号成立.故选:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.4、D【解析】由,求得的取值集合得答案详解】解:由,得,函数定义域是故选:D【点睛】本题考查函数的定义域及其求法,关键是明确正切函数的定义域,属于基础题5、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B6、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.7、C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,故选C.点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,;(2)元素和集合之间是属于关系,子集和集合之间是包含关系;(3)不含任何元素的集合称为空集,空集是任何集合的子集8、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.9、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.10、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误.选D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.12、【解析】13、2【解析】考点:对数与指数的运算性质14、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)15、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),,;(2)在上为增函数,证明见解析.【解析】(1)根据题意,由奇函数的性质可得,进而可得,解可得、、的值,即可得答案;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可【详解】解:(1)根据题意,函数是奇函数(),且,则,又由,则有,且,解得,,.(2)由(1)可得:,函数在上为增函数证明:设任意的,,又由,则且,,则有,故函数在上为增函数【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是求出、、的值,属于基础题17、(1)(2)证明见解析.【解析】(1)把已知条件转化成大于在上的最小值即可解决;(2)先求导函数,判断出函数的单调区间,图像走势,再判断函数零点,隐零点问题重在转化.【小问1详解】由得,则在上单调递增,在上最小值为若,成立,则必有由,得故实数的取值范围为【小问2详解】在上单调递增,且恒成立,最小正周期,在上最小值为由此可知在恒为正值,没有零点.下面看在上的零点情况.,,则即在单调递增,,故上有唯一零点.综上可知,在上有且只有一个零点.令,则,令,则即在上单调递减,故有18、(1)最小正周期为;单调递增区间为;(2)【解析】(1)利用二倍角和辅助角公式化简得到,由解析式可确定最小正周期;令,解不等式可求得单调递增区间;(2)利用可求得的范围,对应正弦函数可确定的范围,进而得到所求值域.【详解】(1),的最小正周期;令,解得:,的单调递增区间为;(2)当时,,,,即在上的值域为.19、(1)-1,1(2)函数fx(3)函数fx在区间0,1【解析】(1)根据对数的真数部分大于零列不等式求解;(2)根据f-x(3)∀x1,x2∈0,1,且【小问1详解】根据题意,有1+x>0,1-x>0,得-1<x<1所以函数fx的定义域为-1,1【小问2详解】函数fx为偶函数证明:函数fx的定义域为-1,1因为f-x所以fx为偶函数【小问3详解】函数fx在区间0,1上单调递减证明:∀x1,x2fx因为0<x1+又1+所以1+x所以lg1+x1所以函数fx在区间0,120、(1)或;(2).【解析】(1)可以求出,时,可以求出,然后进行补集、交集的运算即可;(2)根据即可得出,是方程的实数根,带入方程即可求出.【详解】(1),时,;或;或;(2);是方程的一个实根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省丹东市本年度(2025)小学一年级数学部编版能力评测(上学期)试卷及答案
- 甘肃省河西五市2025年高三压轴卷英语试卷含答案
- 流体力学考试模拟题(附参考答案)
- 2025届新疆维吾尔自治区克拉玛依市第十三中学高考英语三模试卷含解析
- 2025届四川省南充市高三下学期第三次诊断考试物理试题(原卷版+解析版)
- 翻译速度与质量平衡训练考核试卷
- 河湖治理工程生态景观设计考核试卷
- 电视机制造业的法律法规遵守与合规性考核试卷
- 纺织设备库存管理与优化考核试卷
- 珠宝首饰行业物流与供应链优化策略考核试卷
- 【水力学】-水力学课后答案2
- 新能源公司技术监督考试附有答案
- NFPA59A2021中文版液化天然气生产储存和装运标准
- 纸制品包装行业国家产业政策的支持研究
- 企业能源审计与能源审计报告编写
- 九宫数独题200题及答案
- 电子产品装配工艺要求
- 某某小学关于课时、课程、作业等的减负情况汇报
- 德语四级真题2023
- 高中数学说题课件
- 文档文档防淹门
评论
0/150
提交评论