




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13/142022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则A. B.C. D.2.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.3.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.4.过点且平行于直线的直线方程为()A. B.C. D.5.已知,则的最小值是()A.2 B.C.4 D.6.下列各组函数表示同一函数的是()A., B.,C., D.,7.已知点,,,则的面积为()A.5 B.6C.7 D.88.设,,若,则ab的最小值是()A.5 B.9C.16 D.259.已知方程的两根分别为、,且、,则A. B.或C.或 D.10.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.11二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,则=______________12.是第___________象限角.13.在中,,,与的夹角为,则_____14.已知函数的图象如图,则________15.函数的定义域为___16.已知为第二象限角,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值18.已知函数.(1)求函数的周期;(2)求函数的单调递增区间.19.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围20.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:具体过程如下:如图,在平面直角坐标系内作单位圆,以为始边作角.它们的终边与单位圆的交点分别为则,由向量数量积的坐标表示,有设的夹角为,则,另一方面,由图(1)可知,;由图(2)可知,于是所以,也有;所以,对于任意角有:此公式给出了任意角的正弦、余弦值与其差角的余弦值之间的关系,称为差角的余弦公式,简记作.有了公式以后,我们只要知道的值,就可以求得的值了阅读以上材料,利用图(3)单位圆及相关数据(图中是的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题:(1)判断是否正确?(不需要证明)(2)证明:21.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】∵∴∴∴故选A2、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C3、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.4、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A5、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.6、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.7、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A8、D【解析】结合基本不等式来求得的最小值.【详解】,,,,当且仅当时等号成立,由.故选:D9、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.10、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.12、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.13、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.14、8【解析】由图像可得:过点和,代入解得a、b【详解】由图像可得:过点和,则有:,解得∴故答案为:815、【解析】解不等式组即得解.【详解】解:由题得且,所以函数的定义域为.故答案为:16、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为18、(1)(2)【解析】(1)先把函数化简为,利用正弦型函数的周期公式,即得解(2)由解出的范围就是所要求的递增区间.【小问1详解】故函数的周期【小问2详解】由,得,所以单调递增区间为19、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.20、(1)正确;(2)证明见解析【解析】(1)根据单位向量的定义可得出结论;(2)根据向量相等及坐标运算,化简计算即可证明结论.【详解】(1)因为对于非零向量是方向上的单位向量,又且与共线,所以正确;(2)因为为的中点,则,从而在中,,又又M是AB的中点,所以,化简得,结论得证.21、(1);(2)在上为单调增函数;(3)【解析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;(2)判断单调性,一般由单调性定义,设,判断的正负(因式分解后判别),可得结论;(3)首先由,得,这样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗大数据管理隐私保护法规的解读与实施
- 医疗行业创新方向对话式技术在诊疗中的运用
- 医疗信息技术在商业保险中的价值挖掘
- 医院信息化建设与流程优化探讨
- 销售人员活动总结
- 医用废物处理及环保安全规范
- 帕金森病(早发型青年型)的临床护理
- 2025年小学教师教育技术能力培训总结模版
- 2025年春季预防性试验工作总结模版
- 义齿公司员工合同范例
- 石材养护报价单
- 世界各地的建筑·小学生课件
- 试题-医疗器械质量管理培训
- 围术期护理常规及技术规范
- 微笑曲线中文版课件
- 船舶修造行业安全风险监控与应急措施
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 《智能家居系统》课件
- 2024高考物理一轮复习第63讲光的波动性电磁波(练习)(学生版+解析)
- DB11T 065-2022 电气防火检测技术规范
- 标准化服务在博物馆展览策划中的应用考核试卷
评论
0/150
提交评论