版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]2.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.33.已知集合,,,则()A. B. C. D.4.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种5.已知集合,则全集则下列结论正确的是()A. B. C. D.6.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.7.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i8.若的内角满足,则的值为()A. B. C. D.9.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是10.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.11.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.12.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知扇形的半径为1,面积为,则_____.14.已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为________.15.已知函数的部分图象如图所示,则的值为____________.16.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.18.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.19.(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.20.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.21.(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.22.(10分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.2.C【答案解析】
若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【题目详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【答案点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.3.D【答案解析】
根据集合的基本运算即可求解.【题目详解】解:,,,则故选:D.【答案点睛】本题主要考查集合的基本运算,属于基础题.4.B【答案解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【题目详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【答案点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.5.D【答案解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【题目详解】由,则,故,由知,,因此,,,,故选:D【答案点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.6.A【答案解析】
在中,由余弦定理,得到,再利用即可建立的方程.【题目详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【答案点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.7.B【答案解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.8.A【答案解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【题目详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【答案点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.9.D【答案解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【题目详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【答案点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.10.C【答案解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【题目详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【答案点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.11.B【答案解析】
此题画出正方体模型即可快速判断m的取值.【题目详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【答案点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.12.D【答案解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【题目详解】设角,则,,所以在等腰三角形中,,则.故答案为:.【答案点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.14.【答案解析】
由可知R为中点,设,由过切点的切线方程即可求得,,代入,,则在直线上,即可得方程为,将,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【题目详解】如图,由可知R为MN的中点,所以,,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,,所以在直线上,从而直线MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为:.【答案点睛】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.15.【答案解析】
由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【题目详解】由图可得,,所以,即,又,即,,又,故,所以,.故答案为:【答案点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.16.【答案解析】
先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【题目详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【答案点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.证明见解析【答案解析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.【题目详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【答案点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.18.(1);(2);(3)利润约为111.2万元.【答案解析】
(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【题目详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【答案点睛】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.19.(1)(2)【答案解析】
(1)根据正弦定理到,得到答案.(2)计算,再利用余弦定理计算得到答案.【题目详解】(1)由,可得,因为,所以,所以.(2),又因为,所以.因为,所以,即.【答案点睛】本题考查了正弦定理和余弦定理,意在考查学生的计算能力.20.(1)见解析;(2)(i)(ii)证明见解析【答案解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【题目详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【答案点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.21.(1)(2)【答案解析】
(1))当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【题目详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海中医药大学附属岳阳中西医结合医院病理科负责人岗位公开招聘备考题库及答案解析(夺冠)
- 2025下半年浙江舟山市国际海运职业技术学院招聘高层次人才1人参考题库必考题
- 2025中国科学院上海生命科学研究院生物化学与细胞生物学研究所分子细胞卓越中心韩雪祥组招聘博士后备考题库及答案1套
- 2025云南大口马牙国际旅行社有限公司招聘合同制工作人员笔试备考试卷(3人)及答案解析(夺冠)
- 2025云南昭通鲁甸县公安局招聘辅警32人备考题库及答案1套
- 2025南平武夷新区业务部门招聘3人参考题库完美版
- 2025四川广安市前锋区人社局招聘见习生2人参考题库必考题
- 2025国家公务员招录考试即将发布考试备考题库附答案
- 2025年临沂市公安机关第四季度招录警务辅助人员笔试的备考题库新版
- 2025年保定学院辅导员考试笔试题库附答案
- 电工承包简单合同(2篇)
- 新能源电站单位千瓦造价标准值(2024版)
- 军队院校招生文化科目统一考试模拟试卷
- 03课题三-建筑运行大数据安全与数据质量-20180703
- 工业区物业服务手册
- 2024新能源集控中心储能电站接入技术方案
- 河南省信阳市2023-2024学年高二上学期期末教学质量检测数学试题(含答案解析)
- 零售行业的店面管理培训资料
- 培训课件电气接地保护培训课件
- 污水管网工程监理月报
- 安徽涵丰科技有限公司年产6000吨磷酸酯阻燃剂DOPO、4800吨磷酸酯阻燃剂DOPO衍生品、12000吨副产品盐酸、38000吨聚合氯化铝、20000吨固化剂项目环境影响报告书
评论
0/150
提交评论