




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.42.按如图所示的运算程序,输入的的值为,那么输出的的值为()A.1 B.2 C.3 D.43.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形4.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.35.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖6.如图,在平面直角坐标系中,将正方形绕点逆时针旋转45°后得到正方形.依此方式,绕点连续旋转2020次,得到正方形,如果点的坐标为,那么点的坐标为()A. B. C. D.7.下列事件中,随机事件是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.在只装了红球的袋子中摸到白球 D.太阳从东方升起8.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.9.如图,四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=3:5,则四边形ABCD和四边形A'B'C'D'的面积比为()A.3:5 B.3:8 C.9:25 D.:10.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将边长为4的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为3时,则的长为_________.12.方程的根是___________.13.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.14.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是______m.15.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.16.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.17.关于的一元二次方程的二根为,且,则_____________.18.若,且,则=______.三、解答题(共66分)19.(10分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.20.(6分)如图,已知△ABC.(1)尺规作图,画出线段AB的垂直平分线(不写作法,保留作图痕迹);(2)设AB的垂直平分线与BA交于点D,与BC交于点E,连结AE.若∠B=40°,求∠BEA的度数.21.(6分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.22.(8分)沙坪坝正在创建全国文明城市,其中垃圾分类是一项重要的举措.现随机抽查了沙区部分小区住户12月份某周内“垃圾分类”的实施情况,并绘制成了以下两幅不完整的统计图,图中表示实施天数小于5天,表示实施天数等于5天,表示实施天数等于6天,表示实施天数等于7天.(1)求被抽查的总户数;(2)补全条形统计图;(3)求扇形统计图中的圆心角的度数.23.(8分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.24.(8分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.25.(10分)(1)计算:2cos60°+4sin60°•tan30°﹣6cos245°(2)解方程:26.(10分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次函数的图象与性质对各个结论进行判断,即可求出答案.【详解】解:∵抛物线的对称轴过点,∴抛物线的对称轴为,即,可得由图象可知,,则,∴,①正确;∵图象与x轴有两个交点,∴,即,②错误;∵抛物线的顶点在x轴的下方,∴当x=1时,,③错误;∵点在抛物线上,即是抛物线与x轴的交点,由对称轴可得,抛物线与x轴的另一个交点为,故当x=−2时,,④正确;综上所述:①④正确,故选:B.【点睛】本题主要考查了二次函数图象与系数的关系、抛物线与x轴的交点,解题的关键是逐一分析每条结论是否正确.解决该题型题目时,熟练掌握二次函数的图象与性质是关键.2、D【分析】把代入程序中计算,知道满足条件,即可确定输出的结果.【详解】把代入程序,∵是分数,∴不满足输出条件,进行下一轮计算;把代入程序,∵不是分数∴满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.3、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.4、A【分析】摸到红球的频率稳定在25%,即=25%,即可即解得a的值【详解】解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=1.故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键5、C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.6、A【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=,
∴A1(,),
如图,由旋转得:OA=OA1=OA2=OA3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OA绕点O逆时针旋转45°,依次得到∠AOA1=∠A1OA2=∠A2OA3=…=45°,
∴A1(1,1),A2(0,),A3(,),A4(,0)…,
发现是8次一循环,所以2020÷8=252…余4,
∴点A2020的坐标为(,0);故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.7、B【分析】由题意根据随机事件就是可能发生也可能不发生的事件这一定义,依次对选项进行判断.【详解】解:A、任意画一个三角形,其内角和为180°,是必然事件,不符合题意;B、经过有交通信号的路口遇到红灯,是随机事件,符合题意;C、在只装了红球的袋子中摸到白球,是不可能事件,不符合题意;D、太阳从东方升起,是必然事件,不符合题意;故选:B.【点睛】本题主要考查必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.8、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.9、C【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=3:5,∴DA:D′A′=OA:OA′=3:5,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:1.故选:C.【点睛】本题考查位似的性质,根据位似图形的面积比等于位似比的平方可得,位似图形即特殊的相似图形,运用相似图形的性质是解题的关键.10、A【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【详解】若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选A.【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.二、填空题(每小题3分,共24分)11、1或1【分析】设AC、交于点E,DC、交于点F,且设,则,,列出方程即可解决问题.【详解】设AC、交于点E,DC、交于点F,且设,则,,重叠部分的面积为,由,解得或1.即或1.故答案是1或1.【点睛】本题考查了平移的性质、菱形的判定和正方形的性质综合,准确分析题意是解题的关键.12、,.【解析】试题分析:,∴,∴,.故答案为,.考点:解一元二次方程-因式分解法.13、25【分析】如下图,先分析常春藤一圈展开图,求得常春藤一圈的长度后,再求总长度.【详解】如下图,是常春藤恰好绕树的图形∵绕5圈,藤尖离地面20米∴常春藤每绕1圈,对应的高度为20÷5=4米我们将绕树干1圈的图形展开如下,其中,AB表示树干一圈的长度,AC表示常春藤绕树干1圈的高度,BC表示常春藤绕树干一圈的长度∴在Rt△ABC中,BC=5∴常春藤总长度为:5×5=25米故答案为:25【点睛】本题考查侧面展开图的运算,解题关键是将题干中的树干展开为如上图△ABC的形式.14、10【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令,求出x的值,x的正值即为所求.【详解】在函数式中,令,得,解得,(舍去),∴铅球推出的距离是10m.【点睛】本题是二次函数的实际应用题,需要注意的是中3代表的含义是铅球在起始位置距离地面的高度;当时,x的正值代表的是铅球最终离原点的距离.15、.【解析】试题分析:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率==.故答案为.考点:列表法与树状图法.16、1【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【详解】∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=1米.故答案为1.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.17、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】∵的一元二次方程的二根为∴∴又,代入得解得:m=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.18、12【分析】设,则a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【详解】解:设,则a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案为12.【点睛】此题主要考查了比例的性质,利用等比性质是解题关键.三、解答题(共66分)19、(1);(2)两次所抽取的卡片恰好都是轴对称图形的概率为.【分析】(1)先判断其中的中心对称图形,再根据概率公式求解即得答案;(2)先画出树状图得到所有可能的情况,再判断两次都是轴对称图形的情况,然后根据概率公式计算即可.【详解】解:(1)中心对称图形的卡片是A和D,所以从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为;(2)轴对称图形的卡片是B、C、E.画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,分别是(B,C)、(B,E)、(C,B)、(C,E)、(E,B)、(E,C),∴两次所抽取的卡片恰好都是轴对称图形的概率=.【点睛】本题考查了用画树状图或列表法求两次事件的概率、中心对称图形和轴对称图形的定义等知识,熟知中心对称图形和轴对称图形的定义以及用画树状图或列表法求概率的方法是解题的关键.20、(1)见解析;(2)100°【分析】(1)根据垂直平分线的尺规作图法,即可;(2)根据垂直平分线的性质定理,可得AE=BE,进而即可求出答案.【详解】(1)线段AB的垂直平分线如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,∴∠BEA=180°﹣∠B﹣∠BAE,=180°﹣40°﹣40°=100°.答:∠BEA的度数为100°.【点睛】本题主要考查尺规作中垂线以及中垂线的性质定理,掌握中垂线的性质定理是解题的关键.21、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.22、(1)600;(2)详见解析;(3)72°【分析】(1)根据统计图可得,被抽查的总户数为;(2)先求出B,D对应的户数,再画图;D:(户);B:(户)(3)根据扇形统计图定义,B的圆心角度数为【详解】解:(1)被抽查的总户数为=600(2)D:=180(户)B:(户)条形统计图如图所示:(3)B的圆心角度数为【点睛】考核知识点:条形图和扇形统计图.理解统计图意义,从统计图分析信息是关键.23、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四边形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,∵∠FAQ=∠BAC,∠QFA=∠CBA,∴△QFA∽△CBA.∴,∴.同理:△CGP∽△CBA,∴∴,∴,当时,△DPQ的面积最小.最小值为.②由图像可知点D的坐标为(2,3),AC=5,直线AC的解析式为:.三角形直角的位置不确定,需分情况讨论:当时,根据勾股定理可得出:,整理,解方程即可得解;当时,可知点G运动到点B的位置,点P运动到C的位置,所需时间为t=3;当时,同理用勾股定理得出:;整理求解可得t的值.由此可得出t的值为:,,,,.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.24、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年人教版七年级数学下册期末专项复习 01 选择题(含答案)
- 教学课件成品图片
- 教学常规管理交流课件
- 管材通水调试方案(3篇)
- 工厂打包计划方案(3篇)
- 隔离小区规划方案(3篇)
- 烟道设计处理方案(3篇)
- DB1301T 304-2019 设施桃树速成丰产栽培技术规程
- 猎头分工安排方案(3篇)
- 中考九年级化学实验操作规范与安全专题复习 练习题(含答案)
- 计算物理面试题及答案
- JG/T 455-2014建筑门窗幕墙用钢化玻璃
- 村文书考试题及答案
- 创新创业策划书格式
- 大数据在区域经济学中的应用研究-洞察阐释
- 美洲文化课件教学
- 2025届重庆市巴川中学生物七下期末统考试题含解析
- 医学检验进修汇报
- 2025春季学期河南电大本科补修课《民法学#》一平台无纸化考试(作业练习+我要考试)试题及答案
- 《数据分析与可视化》课件
- 《关于智能家居系统》课件
评论
0/150
提交评论