




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图是作的作图痕迹,则此作图的已知条件是()A.已知两边及夹角 B.已知三边 C.已知两角及夹边 D.已知两边及一边对角2.若分式的值为负数,则x的取值范围是()A.x>3 B.x<3 C.x<3且x≠0 D.x>-3且x≠03.如图,一个梯形分成-一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是和,那么阴影部分的面积是()A. B. C. D.4.下列几组数中,为勾股数的是()A.4,5,6 B.12,16,18C.7,24,25 D.0.8,1.5,1.75.如图,在△ABC中,CD平分∠ACB交AB于点D,于点E,于点F,且BC=4,DE=2,则△BCD的面积是()A.4 B.2 C.8 D.66.下列分式中,是最简分式的是().A. B. C. D.7.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等.A.1个 B.2个 C.3个 D.4个8.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.9.若,则对于任意一个a的值,x一定是()A.x<0 B.x0 C.无法确定 D.x>010.如图,,AE与BD交于点C,,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.计算:=____.12.将一次函数y=2x+2的图象向下平移2个单位长度,得到相应的函数表达式为____.13.花粉的质量很小.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为________毫克.14.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.15.在平面直角坐标系中,点在第三象限,则m的取值范围是______.16.如图,已知△ABC中,∠BAC=132°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为____.17.若分式的值为0,则x=_____.18.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.三、解答题(共66分)19.(10分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.20.(6分)小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线和线段分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;(3)求线段的函数关系式;(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?21.(6分)(基础模型)已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE(模型应用)在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)22.(8分)运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).23.(8分)解不等式:.24.(8分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式25.(10分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?26.(10分)计算.(1).(2).
参考答案一、选择题(每小题3分,共30分)1、C【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,故已知条件为:两角及夹边,故选C.【点睛】本题主要考查三角形作图及三角形全等的相关知识.2、C【解析】由于分式的分母不为0,那么此分式的分母恒为正数,若分式值为负数,则分子必为负数,可根据上述两点列出不等式组,进而可求出x的取值范围.【详解】根据题意得解得x<3且x≠0.故选:C.【点睛】考查分式的值,根据两式相除,同号得正,异号得负即可列出不等式,求解即可.3、B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:∴阴影部分面积是25,
故选:B.【点睛】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.4、C【分析】根据勾股数的定义:满足的三个正整数,称为勾股数解答即可.【详解】解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足,还要是正整数.5、A【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,
∴DF=DE=2,∴;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.6、D【详解】A选项:=不是最简分式;B选项:=,不是最简分式;C选项:==x-y,不是最简分式;D选项,是最简分式.故选D.点睛:判断一个分式是不是最简分式关键看分子、分母是否有公因式,如果分子分母是多项式,可以先分解因式,以便于判断是否有公因式,从而判断是否是最简分式.7、A【分析】根据命题的真假性进行判断即可得解.【详解】①数轴上的点和实数是一一对应的,故原命题错误,是假命题;②中,已知两边长分别是3和4,则第三条边长为5或,故原命题错误,是假命题;③在平面直角坐标系中点关于y轴对称的点的坐标是,故原命题正确,是真命题;④两条平行直线被第三条直线所截,内错角相等,故原命题题错误,是假命题.所以真命题只有1个,故选:A.【点睛】本题主要考查了相关命题真假性的判断,熟练掌握相关命题涉及的知识点是解决本题的关键.8、C【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.9、D【解析】分析:根据完全平方公式对a2-2a+3进行配方后,再由非负数的性质,可求得x的取值范围.详解:x=a2-2a+3=(a2-2a+1)+2=(a-1)2+2,∵(a-1)2≥1,∴(a-1)2+2>1.故选D.点睛:本题考查了完全平方公式的利用,把式子a2-2a+3通过拆分常数项把它凑成完全平方式是解本题的关键,因为一个数的平方式非负数,所以一个非负数加上一个正数,结果肯定>1.10、D【分析】直接利用三角形的外角性质得出度数,再利用平行线的性质分析得出答案.【详解】解:,.故选D.【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.二、填空题(每小题3分,共24分)11、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【详解】解:∵12=21,
∴=1,
故答案为:1.【点睛】本题考查了算术平方根的定义,先把化简是解题的关键.12、y=2x【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000037毫克可用科学记数法表示为3.7×10-5毫克.故答案为.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、125°【详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).15、【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16、84°【分析】利用三角形的内角和定理可得∠B+∠C=48°,然后根据折叠的性质可得∠B=∠DAB,∠C=∠EAC,从而求出∠DAB+∠EAC=48°,即可求出∠DAE.【详解】解:∵∠BAC=132°,∴∠B+∠C=180°-∠BAC=48°由折叠的性质可得:∠B=∠DAB,∠C=∠EAC∴∠DAB+∠EAC=48°∴∠DAE=∠BAC-(∠DAB+∠EAC)=84°故答案为:84°.【点睛】此题考查的是三角形的内角和定理和折叠的性质,掌握三角形的内角和定理和折叠的性质是解决此题的关键.17、-1【分析】根据分式值为零的条件计算即可;【详解】解:由分式的值为零的条件得x+1=0,x﹣2≠0,即x=﹣1且x≠2故答案为:﹣1.【点睛】本题主要考查了分式值为零的条件,准确计算是解题的关键.18、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.三、解答题(共66分)19、证明见解析.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由AD是∠BAC的平分线,AD∥PM得∠E=∠APE,AP=AE,再证△BMF≌△CMP,得PC=BF,∠F=∠CPM,进而即可得到结论.【详解】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE.∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,又∵∠BMF=∠CMP,∴△BMF≌△CMP(ASA),∴PC=BF,∠F=∠CPM,∴∠F=∠E,∴BE=BF∴PC=BE=BA+AE=BA+AP.【点睛】本题主要考查角平分线的定义以及平行线的性质,三角形全等的判定和性质定理以及等腰三角形的判定定理,添加合适的辅助线,构造全等三角形和等腰三角形,是解题的关键.20、(1)15;;(2)s与t的函数关系式s=t(0≤t≤45).(1)线段的函数解析式为s=-t+12(10≤t≤45);(4)1千米【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(1)由图象可知,小聪在10≤t≤45的时段内s是t的一次函数,设线段的函数解析式为s=mt+n(m≠0)把(10,4),(45,0)代入利用待定系数法先求得函数关系式,(4)根据求函数图象的交点方法求得函数交点坐标即可.【详解】(1)∵10−15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.故答案为:15;;(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(1)由图象可知,小聪在10≤t≤45的时段内s是t的一次函数,设线段的函数解析式为s=mt+n(m≠0)代入(10,4),(45,0),得解得∴s=-t+12(10≤t≤45),即线段的函数解析式为s=-t+12(10≤t≤45);(4)令-t+12=t,解得t=当t=时,S=×=1.答:当小聪与小明迎面相遇时,他们离学校的路程是1千米.【点睛】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.21、(1)详见解析;(2)(﹣6,﹣2);(3)2;(1)a+b=-1或b﹣a=1.【分析】(1)利用同角的余角相等判断出∠CAD=∠BCE,进而利用AAS即可得出结论;(2)先求出直线l的解析式,进而确定出点A,B坐标,再判断出△ACD≌△CBE,即可得出结论;(3)同(2)的方法可得△OAB≌△FBC,从而得BF=OA=1,再证△BED≌△FEC(AAS),即可得到答案;(1)分点C在第二象限,第三象限和第四象限三种情况:先确定出点A,B坐标,再同(2)(3)的方法确定出点C的坐标(用k表示),即可得出结论.【详解】(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=∠ACD+∠BCE=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(2)如图1,过点C作CE⊥y轴于点E,∵直线l:y=kx﹣1k经过点(2,﹣3),∴2k﹣1k=﹣3,∴k=,∴直线l的解析式为:y=x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=x﹣6,∴x=1,∴A(1,0),∴OA=1,同(1)的方法得:△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=1,∴OE=OB﹣BE=6﹣1=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,对于直线l:y=kx﹣1k,令x=0,则y=﹣1k,∴B(0,﹣1k),∴OB=1k,令y=0,则kx﹣1k=0,∴x=1,∴A(1,0),∴OA=1,过点C作CF⊥y轴于F,则△OAB≌△FBC(AAS),∴BF=OA=1,CF=OB=1k,∴OF=OB+BF=1k+1,∵点C在第四象限,∴C(1k,-1k-1),∵B(0,﹣1k),∵BD∥x轴,且D在y=x上,∴D(﹣1k,﹣1k),∴BD=1k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=BF=2,故答案为:2;(1)①当点C在第四象限时,由(3)知,C(1k,-1k-1),∵C(a,b),∴a=1k,b=-1k-1,∴a+b=-1;②当点C在第三象限时,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,如图1,由(2)知,△OAB≌△EBC(AAS),∴CE=OB=1k,BE=OA=1,∴OE=OB﹣BE=1k﹣1,∴C(﹣1k,-1k+1),∵C(a,b),∴a=﹣1k,b=-1k+1,∴b﹣a=1;③当点C在第二象限时,如图3,由(3)知,B(0,﹣1k),A(1,0),∴OB=1k,OA=1,∵△OAB≌△MBC(AAS),∴CM=OB=1k,BM=OA=1,∴OM=BM﹣BO=1﹣1k,∴C(﹣1k,1﹣1k),∵C(a,b),∴a=﹣1k,b=1﹣1k,∴b﹣a=1;④点C不可能在第一象限;综上所述:a+b=-1或b﹣a=1.图3【点睛】本题主要考查三角形全等的判定和性质定理与等腰直角三角形的性质定理以及一次函数图象的综合,掌握“一线三垂直”三角形全等模型,是解题的关键.22、21x+1.【分析】分别根据平方差公式以及多项式乘多项式的法则展开算式,再合并同类项即可.【详解】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石油化工副产品综合利用考核试卷
- 期货市场国际化发展考核试卷
- 篷布帐篷在公园露营地的安全标准与舒适度考核试卷
- 2025企业合作借款合同样本参考
- 2025办公用品买卖合同书范文
- 2025桥梁工程监理委托合同范本
- 2025大陆居民赴澳旅游合同范本
- 2025年全面机械租赁合同模板
- 湖北省“黄鄂鄂”2025年高三下学期4月联考历史
- 机关食堂承包合同常用范例二零二五年
- 酒馆加盟代理协议书
- 加油站站长试题及答案
- 环境突发事件应急预案演练记录
- 外研版(三起)(2024)三年级下册英语Unit 3 单元测试卷(含答案)
- 人教版中职数学拓展模块一:6.2复数的运算课件(共24张课件)
- 2024年同等学力申硕《英语》试题真题及答案
- 公共资源交易知识培训
- 《危机管理案例》课件
- DB13-T5687-2023负压封闭引流术护理规范
- 海绵材料项目可行性研究报告
- 2025年四川成都地铁运营有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论