2022-2023学年山东省淄博市博山九年级数学第一学期期末复习检测试题含解析_第1页
2022-2023学年山东省淄博市博山九年级数学第一学期期末复习检测试题含解析_第2页
2022-2023学年山东省淄博市博山九年级数学第一学期期末复习检测试题含解析_第3页
2022-2023学年山东省淄博市博山九年级数学第一学期期末复习检测试题含解析_第4页
2022-2023学年山东省淄博市博山九年级数学第一学期期末复习检测试题含解析_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为()A.2 B.3 C.4 D.62.如图,矩形的边在轴的正半轴上,点的坐标为,反比例函数的图象经过矩形对角线的交点,则的值是()A.8 B.4 C.2 D.13.如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.4.如图,⊙O的弦CD与直径AB交于点P,PB=1cm,AP=5cm,∠APC=30°,则弦CD的长为()A.4cm B.5cm C.cm D.cm5.在△中,∠,如果,,那么cos的值为()A. B.C. D.6.如图,直线y=x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)7.已知点,,都在反比例函数的图像上,则()A. B. C. D.8.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.9.如果两个相似三角形的相似比为2:3,那么这两个三角形的面积比为()A.2:3 B.: C.4:9 D.9:410.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)二、填空题(每小题3分,共24分)11.如果两个相似三角形的相似比为1:4,那么它们的面积比为_____.12.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.13.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.14.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)15.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个16.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.17.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.18.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.三、解答题(共66分)19.(10分)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.20.(6分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长.(2)求经过O,D,C三点的抛物线的解析式.(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.21.(6分)一位橄榄球选手掷球时,橄榄球从出手开始行进的高度与水平距离之间的关系如图所示,已知橄榄球在距离原点时,达到最大高度,橄榄球在距离原点13米处落地,请根据所给条件解决下面问题:(1)求出与之间的函数关系式;(2)求运动员出手时橄榄球的高度.22.(8分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.23.(8分)(1)解方程:.(2)计算:.24.(8分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.25.(10分)某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量(台)与售价(万元/台)之间存在函数关系:.(1)设这种摘果机一期销售的利润为(万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?26.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:设黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴黄球的个数为1.故选C.考点:概率公式.2、C【分析】根据矩形的性质求出点P的坐标,将点P的坐标代入中,求出的值即可.【详解】∵点P是矩形的对角线的交点,点的坐标为∴点P将点P代入中解得故答案为:C.【点睛】本题考查了矩形的性质以及反比例函数的性质,掌握代入求值法求出的值是解题的关键.3、A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4、D【分析】作OH⊥CD于H,连接OC,如图,先计算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.5、A【分析】先利用勾股定理求出AB的长度,从而可求.【详解】∵∠,,∴∴故选A【点睛】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.6、A【分析】根据一次函数解析式可以求得,,根据平面直角坐标系里线段中点坐标公式可得,,根据轴对称的性质和两点之间线段最短的公理求出点关于轴的对称点,连接,线段的长度即是的最小值,此时求出解析式,再解其与轴的交点即可.【详解】解:,,,,同理可得点关于轴的对称点;连接,设其解析式为,代入与可得:,令,解得..【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.7、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.8、D【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为2的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率.【详解】∵点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,∴连接两点所得的所有线段总数n==15条,∵取到长度为2的线段有:FC、AD、EB共3条∴在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为:p=.故选:D【点睛】此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AD的长是解题关键.9、C【分析】根据相似三角形的面积的比等于相似比的平方解答.【详解】∵两个相似三角形的相似比为2:3,∴这两个三角形的面积比为4:9,故选:C.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.10、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.二、填空题(每小题3分,共24分)11、1:1【解析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【详解】∵两个相似三角形的相似比为1:4,∴它们的面积比为1:1.故答案是:1:1.【点睛】考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12、(﹣3,1)【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.13、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.14、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1

时,y1>y2

.故答案为>15、14【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.16、﹣1.5或1.【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)1+m1﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)1+m1﹣1,得m=﹣1.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m1﹣1,得m1=1,m1=﹣1(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)1+m1﹣1,得m=(舍去);由上可得,m的值为﹣1.5或1,故答案为:﹣1.5或1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.17、1.【解析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.∵﹣1.5<0,∴函数有最大值.∴,即飞机着陆后滑行1米才能停止.18、【解析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】解:当x=1时,y=2,

∴点A1的坐标为(1,2);

当y=-x=2时,x=-2,

∴点A2的坐标为(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).

∵2019=504×4+3,

∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).

故答案为(-21009,-21010).【点睛】本题考查一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.三、解答题(共66分)19、(1)100、35;(2)见解析;(3)【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;

(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;

(3)根据题意画出树状图得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,再根据概率公式计算可得.【详解】解:(1)∵被调查的总人数m=10÷10%=100人,

∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100,35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)根据题意画树状图如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或【分析】(1)由矩形的性质以及折叠的性质可求得CE、CO的长,在Rt△COE中,由勾股定理可求得OE的长;

(2)设AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,从而得出D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;

(3)用含t的式子表示出BP、EQ的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),设N(-2,n),M(m,y),分以下三种情况:①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)∵OABC为矩形,∴BC=AO=5,CO=AB=1.又由折叠可知,,;(2)设AD=m,则DE=BD=1-m,

∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵该抛物线经过C(-1,0)、O(0,0),∴设该抛物线解析式为,把点D代入上式得,∴a=,∴;(3)如图所示,连接DP、DQ.由题意可得,CP=2t,EQ=t,则BP=5-2t.当DP=DQ时,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故当t=时,DP=DQ;(1)∵抛物线的对称轴为直线x==-2,

∴设N(-2,n),

又由(2)可知C(-1,0),E(0,-3),设M(m,y),

①当EN为对角线,即四边形ECNM是平行四边形时,如图1,

则线段EN的中点横坐标为=-1,线段CM的中点横坐标为,

∵EN,CM互相平分,

∴=-1,解得m=2,

又M点在抛物线上,

∴y=×22+×2=16,

∴M(2,16);

②当EM为对角线,即四边形ECMN是平行四边形时,如图2,

则线段EM的中点横坐标为,线段CN中点横坐标为,∵EM,CN互相平分,

∴m=-3,解得m=-6,

又∵M点在抛物线上,,∴M(-6,16);

③当CE为对角线,即四边形EMCN是平行四边形时,如图3,

线段CE的中点的横坐标为=-2,线段MN的中点的横坐标为,∵CE与MN互相平分,∴,解得m=-2,

当m=-2时,y=,即M.综上可知,存在满足条件的点M,其坐标为(2,16)或(-6,16)或.【点睛】本题是二次函数的综合题,涉及待定系数法求二次函数解析式、全等三角形的判定和性质、折叠的性质、矩形的性质以及平行四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,第(1)小题注意分类讨论思想的应用.21、(1)(2)【分析】(1)由题意知:抛物线的顶点坐标设二次函数的解析式为把代入即可得到答案,(2)令求解的值即可.【详解】解:(1)由题意知:抛物线的顶点为:设二次函数的解析式为把代入解得:则二次函数的解析式为:(2)由题意可得:当运动员出手时橄榄球的高度米.【点睛】本题主要考查了二次函数的应用,熟练掌握顶点式法求函数解析式是解题的关键.22、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.23、(1),;(2)【分析】(1)先提取公因式分解因式分为两个一元一次方程解出即可得到答案;(2)先计算特殊角的三角函数值,再计算加减即可.【详解】(1)解:,∴或,∴,.(2)解:原式.【点睛】本题考查了解一元二次方程-因式分解法、特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题的关键,注意不要混淆各特殊角的三角函数值.24、不公平【解析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【详解】这个游戏对双方不公平.理由:列表如下:

12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:,则小刚获胜的概率为:,∵≠,∴这个游戏对两人不公平.【点睛】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.25、(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论