下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.2.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6423.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则()A. B. C. D.4.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.5.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()A. B.C. D.6.若直线的倾斜角为,则的值为()A. B. C. D.7.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.8.已知集合,,则()A. B. C. D.9.的展开式中,含项的系数为()A. B. C. D.10.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.11.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.12.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.14.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.15.设函数,若在上的最大值为,则________.16.已知直线被圆截得的弦长为2,则的值为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.18.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).19.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.20.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.21.(12分)如图,在四棱锥中,底面是直角梯形且∥,侧面为等边三角形,且平面平面.(1)求平面与平面所成的锐二面角的大小;(2)若,且直线与平面所成角为,求的值.22.(10分)已知点,且,满足条件的点的轨迹为曲线.(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.2.A【答案解析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【题目详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【答案点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c3.D【答案解析】
由题知,又,代入计算可得.【题目详解】由题知,又.故选:D【答案点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.4.A【答案解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【题目详解】因为,所以z的虚部为2.【答案点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.5.A【答案解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得:,解得,然后在中,由余弦定理得:,化简求解.【题目详解】设椭圆的长半轴长为,双曲线的长半轴长为,由椭圆和双曲线的定义得:,解得,设,在中,由余弦定理得:,化简得,即.故选:A【答案点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.6.B【答案解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【题目详解】由于直线的倾斜角为,所以,则故答案选B【答案点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.7.C【答案解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【题目详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【答案点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题8.D【答案解析】
先求出集合B,再与集合A求交集即可.【题目详解】由已知,,故,所以.故选:D.【答案点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.9.B【答案解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【题目详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.10.B【答案解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.11.C【答案解析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【题目详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【答案点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.12.C【答案解析】
设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【题目详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【答案点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.二、填空题:本题共4小题,每小题5分,共20分。13.0.18【答案解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【题目详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【答案点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.14.【答案解析】
直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【题目详解】解:的实部与虚部相等,所以,计算得出.故答案为:【答案点睛】本题考查复数的乘法运算和复数的概念,属于基础题.15.【答案解析】
求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【题目详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【答案点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.16.1【答案解析】
根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【题目详解】解:圆的圆心为(1,1),半径,
因为直线被圆截得的弦长为2,
所以直线经过圆心(1,1),
,解得.故答案为:1.【答案点睛】本题考查了直线与圆相交的性质,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】
(1)利用二倍角公式及三角形内角和定理,将化简为,求出的值,结合,求出A的值;(2)写出三角形的面积公式,由其最大值为求出.由余弦定理,结合,,求出的范围,注意.进而求出周长的范围.【题目详解】解:(1)整理得解得或(舍去)又;(2)由题意知,又,,又周长的取值范围是【答案点睛】本题考查了二倍角余弦公式,三角形面积公式,余弦定理的应用,求三角形的周长的范围问题.属于中档题.18.(1);(2)见解析.【答案解析】
(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【题目详解】(1)因为函数的最小正周期是,所以.又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【答案点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.19.(1).(2)答案见解析【答案解析】
(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【题目详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【答案点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.20.(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【答案解析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【题目详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【答案点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.21.(1);(2).【答案解析】
(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【题目详解】(1)分别取的中点为,连结.因为∥,所以∥.因为,所以.因为侧面为等边三角形,所以又因为平面平面,平面平面,平面,所以平面,所以两两垂直.以为空间坐标系的原点,分别以所在直线为轴建立如图所示的空间直角坐标系,因为,则,,.设平面的法向量为,则,即.取,则,所以.又为平面的法向量,设平面与平面所成的锐二面角的大小为,则,所以平面与平面所成的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮厨师合伙合同范本
- 饭店打工劳务合同范本
- 饰品工厂代卖合同范本
- 饲料生产企业合同范本
- 鲜花冷饮采购合同范本
- 黄金毛料交易合同范本
- 管材采购配送合同范本
- 纸盒包装供货合同范本
- 线路施工维修合同范本
- 经销合同终止后的协议
- GB/T 42513.7-2024镍合金化学分析方法第7部分:钴、铬、铜、铁和锰含量的测定火焰原子吸收光谱法
- (正式版)HGT 5367.6-2024 轨道交通车辆用涂料 第6部分:耐高温电机涂料
- 2024年全国高校文明校园测评细则
- 职业生涯规划书成长赛道
- 新冠病毒实验室检测课件
- 江苏省无锡市第三高级中学2024届高一物理第一学期期中监测模拟试题含解析
- 新版物业交割单
- 第九节-心包疾病的护理课件
- 人教版八年级上册数学全册单元测试卷
- 全过程造价咨询项目服务方案
- 老年人安全用药与护理PPT
评论
0/150
提交评论