2022年江苏省南京市秦淮区四校八年级数学第一学期期末监测试题含解析_第1页
2022年江苏省南京市秦淮区四校八年级数学第一学期期末监测试题含解析_第2页
2022年江苏省南京市秦淮区四校八年级数学第一学期期末监测试题含解析_第3页
2022年江苏省南京市秦淮区四校八年级数学第一学期期末监测试题含解析_第4页
2022年江苏省南京市秦淮区四校八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.等腰三角形的顶角为150°,则它的底角为()A.30° B.15°C.30°或15° D.50°2.如图汽车标志中不是中心对称图形的是()A. B. C. D.3.下列图案中不是轴对称图形的是()A. B. C. D.4.已知:△ABC≌△DCB,若BC=10cm,AB=6cm,AC=7cm,则CD为()A.10cm B.7cm C.6cm D.6cm或7cm5.要说明命题“若>,则>”是假命题,能举的一个反例是()A. B.C. D.6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个7.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)8.一次函数y=﹣2x+2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤310.如图,是的角平分线,,,将沿所在直线翻折,点在边上的落点记为点.那么等于()A. B. C. D.二、填空题(每小题3分,共24分)11.过某个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是_____边形.12.已知是方程3x﹣my=7的一个解,则m=.13.已知等腰三角形的底角是15°,腰长为8cm,则三角形的面积是_______.14.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.15.如图,的面积为,作的中线,取的中点,连接得到第一个三角形,作中线,取的中点,连接,得到第二个三角形……重复这样的操作,则2019个三角形的面积为_________.16.如图,在中,,,的垂直平分线交于,交于,且,则的长为_______.17.三角形三条中线交于一点,这个点叫做三角形的_____.18.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.三、解答题(共66分)19.(10分)如图,已知与都是等腰直角三角形,其中,为边上一点.(1)试判断与的大小关系,并说明理由;(2)求证:.20.(6分)阅读下面材料:小明遇到这样一个问题:如图1,在中,平分,.求证:小明通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如图2,在上截取,使得,连接,可以得到全等三角形,进而解决问题方法二:如图3,延长到点,使得,连接,可以得到等腰三角形,进而解决问题(1)根据阅读材料,任选一种方法证明(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形中,是上一点,,,,探究、、之间的数量关系,并证明21.(6分)(1)(2)22.(8分)如图,为正方形的边的延长线上一动点,以为一边做正方形,以为一顶点作正方形,且在的延长线上(提示:正方形四条边相等,且四个内角为)(1)若正方形、的面积分别为,,则正方形的面积为(直接写结果).(2)过点做的垂线交的平分线于点,连接,试探求在点运动过程中,的大小是否发生变化,并说明理由.23.(8分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.24.(8分)计算:.25.(10分)如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.26.(10分)已知:如图在四边形ABCD中,AB∥CD,AD∥BC,延长CD至点E,连接AE,若,求证:

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据等腰三角形的性质及三角形的内角和定理即可解答.【详解】∵等腰三角形的顶角为150°,∴等腰三角形底角的度数为:.故选B.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理,熟练运用等腰三角形的性质及三角形的内角和定理是解决问题的关键.2、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【点睛】考核知识点:中心对称图形的识别.3、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、C【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.5、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

B、a=4,b=-1,满足a>b,且满足|a|>|b|,不能作为反例,故错误;

C、a=1,b=0;满足a>b,且满足|a|>|b|,不能作为反例,故错误;

D、a=-1,b=-2,满足a>b,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例,

故选D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.6、C【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.7、A【解析】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.8、C【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+2中,k=﹣2<0,b=2>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.【点睛】本题考查一次函数的图象与系数的关系,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解题关键.9、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.10、C【分析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.【详解】根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴BD=EC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,解决本题的关键是证明DE=EC.二、填空题(每小题3分,共24分)11、九.【解析】设这个多边形是n边形,由题意得,n﹣2=7,解得:n=9,即这个多边形是九边形,故答案是:九.12、.【解析】试题分析:∵是方程3x﹣my=7的一个解,∴把代入方程可得3×2﹣3m=7,解得m=.故答案为.考点:二元一次方程的解.13、16cm1【分析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图,∵∠B=∠ACB=15°,

∴∠CAD=30°,∵AB=AC=8,

∴CD=AC=×8=4,

∴三角形的面积=×8×4=16cm1,

故答案为:16cm1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质以及外角的运用,等腰三角形中等边对等角、外角等于和它不相邻的两内角的和是解题的关键.14、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.15、【分析】根据题意可知是△ABC的中位线,可得△ABC∽,相似比为2:1,故S==,同理可得S==×=,进而得到三角形的面积.【详解】∵是的中点,是的中线∴是△ABC的中位线∴△ABC∽,相似比为2:1,∴S==,依题意得是的中位线同理可得S=,则S==,…∴S=故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知中位线的性质及相似三角形的性质.16、【分析】连接BE,由DE是AC的垂直平分线,可得∠DBE=∠A=30°,进而求得∠EBC=30°.根据含30度角的直角三角形的性质可得BE=2EC,AE=2EC,进而可以求得AE的长.【详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴BE是∠ABC的角平分线,∴DE=CE=5,在△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=1.故答案为:1cm.【点睛】此题主要考查线段的垂直平分线的性质和直角三角形的性质.熟练应用线段垂直平分线的性质是解题的关键.17、重心【解析】重心:三角形三条中线交于一点,且重心到顶点的距离与重心到对边中点的距离之比为2:1【详解】解:三角形三条中线交于一点,这个点叫做三角形的重心,故答案为:重心.【点睛】本题考查的是三角形重心的概念,掌握即可解题.18、AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.三、解答题(共66分)19、(1),理由见解析;(2)见解析.【分析】(1)根据等腰直角三角形的性质很容易证明,利用全等三角形的性质即可得出与的大小关系;(2)由可得,从而得到,最后利用勾股定理和等量代换即可得出结论.【详解】(1),理由如下:∵与都是等腰直角三角形∵,∴,又,∴,∴;(2)由,得,即,∴,又,∴.【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键.20、(1)证明见解析;(2),证明见解析【分析】(1)方法一,在上截取,使得,连接,用SAS定理证明,然后得到,,从而得到,然后利用等角对等边求证,使问题得解;方法二,延长到点,使得,连接,利用三角形外角的性质得到∠ABC=2∠E,从而得到∠E=∠C,利用AAS定理证明△AED≌△ACD,从而求解;(2)在上截取,使得,连接,利用三角形外角的性质求得,从而得到,利用SAS定理证明,然后利用全等三角形的性质求解.【详解】解:(1)方法一:如图2,在上截取,使得,连接,∵平分,∴又∵,∴∴,∵∴∴∴∴方法二:如图3,延长到点,使得,连接,∵平分,∴∵∴∠ABC=2∠E又∵∴∠E=∠C∵AD=AD∴△AED≌△ACD∴AC=AE=AB+BE=AB+BD(2)在上截取,使得,连接∵∴∴∵∴∴∵∴∴∴∴,∵∴∴∴∴.【点睛】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、(1);(2)【分析】(1)根据实数运算法则,逐一进行计算即可;(2)利用消元法求解即可.【详解】(1)原式==(2)②-①×2,得代入①,得故方程组的解为【点睛】此题主要考查实数的运算以及二元一次方程组的求解,熟练掌握方法,即可解题.22、(1);(2)的大小不会发生变化,理由见解析.【分析】(1)先通过全等,得到EF=CP,通过勾股定理求=,则正方形的面积===(2)先通过证明,再通过正方形的性质得到,再通过证明得到=45°,所以的大小不会发生变化.【详解】(1)∵四边形ABCD、四边形EFGH、四边形DPEM是正方形∴DP=PE,∠DPE=90°,∠BCD=90°,∠EFG=90°∴∠PCD=∠EFP=90°,∠DPC+∠PDC=90°,∠EPF+∠DPC=90°,∴∠PDC=∠EPF∴△CDP≌△FEP∴EF=CP∵在Rt△CDP中,,正方形的面积==a,正方形的面积==∴正方形的面积===(2)的大小不会发生变化,理由如下,平分在正方形中,的大小不会发生变化.【点睛】本题考查的正方形与全等的综合性题目,灵活运用正方形的特征是解答此题的关键.23、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如图1;②当MN∥OF时,如图2,利用特殊三角函数值求解即可.【详解】(1)A、B、C的坐标分别为:(0,3)、(3,0);OC=BC,则点C是AB的中点,则点C的坐标为:(,);故AC=AB=6=3;(2)点A、B、C的坐标分别为:(0,3)、(3,0)、(,);点D、E、G的坐标分别为:(﹣,0)、(﹣,4)、(2,1);i)设s、t的表达式为:s=kt+b,当t=DN=时,s=EM=EA=2,即点(,2);当t=OD=时,s=EG=6,即点(,6);将点(,2)和点(,6)代入s=kt+b并解得:函数的表达式为:y=t﹣2…①;ii)直线AB的倾斜角∠ABO=α=30°,EB=8,BD=4,DE=4,EM=s、DN=t,①当MN∥OC时,如图1,则∠MNB=∠COB=∠CBO=α=30°,MN=BM=BE﹣EM=8﹣s,NH=BN=(BD﹣DN)=(4﹣t),cos∠MNH==…②;联立①②并解得:s=;②当MN∥OF时,如图2,故点M作MG⊥ED角ED于点G,作NH⊥AG于点H,作AR⊥ED于点R,则∠HNM=∠RAE=∠EBD=α=30°,HN=GD=ED﹣EG=4﹣EMcos30°=4﹣s,MH=MG﹣GH=MEcos30°﹣t=s﹣t,tanα==…③;联立①③并解得:s=;从图象看MN不可能平行于BC;综上,s=或.【点睛】本题考查了直线解析式的动点问题,掌握直角三角形斜边中线定理、两点之间的距离公式、直线解析式的解法、平行线的性质、特殊三角函数值是解题的关键.24、8【分析】根据开平方,开立方,平方和绝对值的运算法则进行计算即可.【详解】解:原式=5+4+2﹣3=8.【点睛】本题主要考查了实数的混合运算,解此题的关键在于熟练掌握其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论