高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件_第1页
高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件_第2页
高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件_第3页
高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件_第4页
高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件_第5页
已阅读5页,还剩463页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高分子化学

Polymerchemistry高分子化学

Polymerchemistry

RADICALPOLYMERIZATION自由基聚合

RADICALPOLYMERIZATION3.1MechanismofRadicalPolymerization3.2InitiatorsandInitiation3.3RateofRadicalPolymerization3.4MolecularWeightandChainTransferReaction3.5ThermodynamicsofPolymerization3.6MethodsofPolymerization3.1MechanismofRadicalPolyAnImportantOneofChainPolymerizationFamilyClassifiedbythenatureofreactivecenter:

radicalpolymerization

cationicpolymerization

anionicpolymerization

coordinatingionicpolymerizationandsoon.AnImportantOneofChainPolyChainpolymerizationconsistsofasequenceofthreesteps:

InitiationreactionPropagationreactionTerminationreactionChainpolymerizationconsists

PrimaryRadical引发剂

Initiator

Primary引发剂Initiator

MonomerRadicalPrimaryRadicalMonomerPrimary

MonomerRadical

ChainRadicalMonomerChainMacromoleculeMacromolecule高分子化学-Polymer-chemistry3自由基引论RADICAL-POLYMERIZATION课件TheRadicalPolymerizationisaveryImportantReactioninPolymerChemistryAleadingpositioninindustry:Productsofradicalpolymerizationcontributetomorethansixtypercentofthetotalproductionofpolymer,andeightypercentofthermoplasticresin.

TheRadicalPolymerizationisApracticallyperfecttheory:

Thegenerationandpropertyofradicalactivecenter;allelementaryreactionsandthereactionmechanism;thedynamicsofpolymerizationreaction;themolecularweightandthefactorsaffectingmolecularweight;Thermodynamictheory:AfullydevelopedtheoryThesehavebeenthetheoriesessentialtothestudyofionicandcoordinationpolymerization.Apracticallyperfecttheory:Table3.1ThepolymeroftheRadicalPolymerization

polyethylenePE

polystyrenePSpolyvinylchloride

PVCpolyvinylidenechloridePVDCTable3.1ThepolymerofthepolyvinylfluoridePVFpolytetrafluoroethylenePTFEpolychlorotrifluoroethylenePCTFE

polyacrylicacidPAA

polyacrylamidePAM

polymethylacrylatePMApolyvinylfluoridePVFpolymethylmethacrylatePMMApolyacrylonitrilePAN

polyvinylacetatePVAc

polybutadienePBpolyisoprenePIP

polychloroprenePCPpolymethylmethacrylate3.1

RadicalPolymerizationMechanism3.1.1Theactivityandthereactionofthefreeradical3.1.2Monomerstructureandtypesofpolymer-ization3.1.3Elementaryreactionsoftheradicalpolymer-ization3.1.4Characteristicsoftheradicalpolymerizationreaction3.1RadicalPolymerizationMe3.1.1

TheactivityandthereactionofthefreeradicalFreeradicalcanbeformedifthereareunpairedelectronorloneelectron.Theelectroniscalledmonoradicalifitistheonlyunpairedelectron.Ifthereareonlytwounpairedelectrons,theyarecalleddiradical.3.1.1TheactivityandthereaFreeRadicals

AtomicradicalsMolecularradicalsIonicradicals

ElectroneutralcompoundresidueFreeRadicalsAtomicradicalsGenerationofFreeRadicals

Thermaldecomposition

PhotochemicaldecompositionOxidation-ReductionreactionHighenergyparticleradiationGenerationofFreeRadicalsT(1)ActivityofTheFreeRadical

Theactivityofafreeradicalisdeterminedbyitsstructure.

Thestrongertheconjugativeeffectofafreeradical,themorestableitis.Polargrouplessenstheactivityofthefreeradical.Bulkygroup

lessenstheactivityofreaction,becauseitpreventsthenearingofthereagent.

(1)ActivityofTheFreeRadicTheOrderoftheRelativeActivity

ofRadicalsTheRadicalsinthelastlinearetheinertradicalsthathavenoabilityofinitiatingolefinicmonomers’polymerization

TheOrderoftheRelativeActi(2)ReactionsofRadicals

TheRadicaladditionreactionTheRadicalcouplingreactionTheRadicaldisproportionationreactionTheRadicaldissociationreactionTheRadicaltransferreaction(2)ReactionsofRadicalsTheR

①RadicalAdditionReaction

...

①RadicalAdditionReaction

.②RadicalCouplingReaction②RadicalCouplingReaction③RadicalDisproportionationReaction③RadicalDisproportionationR

④RadicalDissociationReaction

④RadicalDissociationReacti

⑤RadicalTransferReaction

⑤RadicalTransferReaction

Mostofthemonoolefin,conjugateddiolefin,alkyne,

andcarbonylcompounds,andsomeoftheheterocycliccompoundscanbepolymerizedfromthethermodynamicviewpoint.

3.1.2

MonomerStructureand

PolymerizationTypesMostofthemonoolefin,conjHowever,

theselectivityofthevariousmonomerstodifferentpolymerizationmechanismsvariesgreatly.However,theselectivityofExamples

Vinylchlorideonlycanundergoradicalpoly-merization.Isobutyleneonlycanundergocationicpolymer-ization.Methylmethacrylatecanundergoradicalaswellasanionicpolymerization.Styrenecanundergoradical,anionic,cationic,andcoordinationpolymerization.ExamplesVinylchlorideonlyWhatmakesthedifferencesismainlydecidedbythestructureofthesubstitu-entonthecarbon-carbondoublebond,andisalsodecidedbytheelectroniceffectandthestericeffectofthesubstituent.Ethylene,themostsimplealkene,withasymmetricstructure,canundergoradicalpolymerizationunderhighpressure,

andcoordinationpolymerizationbyparticularinitiatorsystems.WhatmakesthedifferencesisMonosubsititutedAlkeneDoubleBondMonomersCH2=CH-X,theelectroniceffectofthesubstituentsXinvolvestheinductiveorresonanceeffect.Theeffectofsubstituentmanifestsitselfbyitsalterationofelectron-clouddensityonthedoublebondandithastheabilitytoaffectthestabilityoftheactivecenter.MonosubsititutedAlkeneDoublWhetheranalkenepolymerizesbyradical,anionic,orcationicinitiatorsdependsontheinductiveandresonancecharacteristicsofthesubstituentspresent.WhetheranalkenepolymerizesToCH2=CH-X,whenXiselectron-pushingsubstituentItincreasestheelectron-clouddensity,facilitatingitsbondingtoacationicspecies.

Further,thesesubstituentsstabilizethecationicpropagatingspeciesbyresonance,anddecreasetheactivationenergyofthereaction.Thus,electron-pushingsubstituentsfacilitatethemonomerstocationicpolymerization.ToCH2=CH-X,whenXiselectrElectron-pushing

substituentssuchasalkyl,alkoxy,phenyl,andalkenylTheeffectofalkylgroupsinfacilitatingcationicpolymerizationisweak,

Anditisonlythe1,1-disubstitutedalkeneswhichundergocationicpolymerization.

CH3

CH2=CCH2=CHCH3ORElectron-pushingsubstituents

ToCH2=CH-X,whenXis

electron-

withdrawingsubstituent

Itlowerstheelectron-density,andstabilizesthepropagatinganionicspeciesbyresonance.And,thus,itfacilitiesanionicpolymerizationofthemonomers.

ToCH2=CH-X,whenXis

eleElectron-withdrawingsubstituents:cyanoandcarbonyl(aldehyde,ketone,acid,orester)Radicalpolymerizationissomewhatsimilartoanionicpolymerization.Electron-withdrawingsubstituentsfacilitatetheattackofananionicspeciesbydecreasingtheelectron-densityonthedoublebond.Theystabilizethepropagatingofanionicspeciesbyresonance,whichweakenstheactivationenergyofthereaction.Electron-withdrawingsubstituStrongelectron-withdrawingsubstituents

facilitatethemonomerstoanionicpolymeri-

zationwithweakeronesincliningtoradical

polymerizationMonomerswithsubstituentsbetweenthetwocanundergoeitheranionicorradicalpolymerization.Halogensubstituents,althoughelectron-withdrawinginductively,canresonancestabilizetheanionicpropagatingspecies,however,bothoftheeffectsareweak.Strongelectron-withdrawingConjugated

AlkeneStyrene,butadiene,isoprene,andotherconjugatedalkene,becauseofitsstrongdelocalizationoftheπ-bond,areeasytobeinducedandpolarized,thus,canundergoallofthefourmodespolymerizationmentionedabove.CH2=CH-CH=CH2CH2=C-CH=CH2CH3CH2=CHConjugatedAlkeneStyrene,butStericEffect

oftheSubstituentStericEffect-----thevolume,amount,andlocationofthesubstituent.

Inkinetics-----Itproducesanoticeableeffectonthecapabilityofpolymerization.However,itusuallydoesn’tcontaintheselectivitytodifferentactivecenters.StericeffectsofmonosubstituentsarenotobviousStericEffectoftheSubstitue1,1-disubstitutedalkenemonomersStericeffectsusuallybeingignored,

theactivityandselectivityofthemonomersareonlythoughttobedecidedbytheelectron-effectofbothsubstituents.However,whenbothofthesubstituentsarephenylgroups,becauseofitslargebulk,monomerscanonlyformdipolymer.

RCH2=CR’1,1-disubstitutedalkenemonom1,2-disubstitutedmonomersOwingtostrongstericeffect,thiskindofmonomersareusuallyhardtopolymerize.

Forexample,maleicanhydrideishardtohomopolymerize,butcancopolymerizewithstyreneorvinylacetate.

CH=CHRR’1,2-disubstitutedmonomersOwinTriortetrasubstitutedethyleneTheyususllycannotpolymerize.But,thereareanexceptionwhenthesubstituentisfluorin.Owingtothesmallradiusofthefluorin,allofthem,

frommonototetrasubstitutedfluoroethylene,

canpolymerizewell.Triortetrasubstitutedethyle3.1.3

ElementaryReactionsofRadicalPolymerizationRadicalpolymerizationischainpolymerizationComposedbyatlestthreeelementaryreactionsChaininitiationChainpropagationChainterminationPerhapsaccompaniedbychaintransferreactionandsoon3.1.3ElementaryReactionsof

PrimaryRadical

MonomerRadical(1)ChainInitiationReaction

heatabsorptionheatliberation

Initiator

MonomerPrimaryMonomer(1)ChainInit

PrimaryRadicalThedecompositionofinitiatorsisaheatabsorp-tion

reaction.Witharelativelyhighactivationemergy,about100~170KJ/molPrimaryRadicalPrimaryThedecompositionofDecompositionrateconstantisusually

10-4~10-6/s

Thereactionrateisrelativelyslow.Initiatordecompositionreaction-----controlstheoverallrateofthechaininitiation.Decompositionrateco

MonomerRadical

MonomerTheprimaryradicalsaddtomonomerstoproducemonomerradicals.Theprocessofopeningaπ-bond,andproducingaσ-bondisaexothermalreaction.MonomerRadicalMonomerMonomerTheprimaryraWithalowactivationenergy,about20~34kJ/mol

Andagreatreactionrateconstant.Thisisaveryfastreaction.

Withalowactivationenergy,(2)ChainPropagationReaction

(2)ChainPropagationReactionHead-to-TailstructureHead-to-HeadstructureTail-to-TailstructureHead-to-TailstructureHead-to-(3)ChainTerminationReactionRadicalExhaustionCouplingTerminationDisproportionationTermination(3)ChainTerminationReactionR

Monoradicaltermination------

ExhaustsoneradicalinitiatorBiradicaltermination------couplingtermination;disproportionationterminationMonoradicaltermination------Biradicaltermination------

couplingtermination;

disproportionationterminationCouplingTermination----Thedegreeofpolymerizationisthesumofthemonomericunitsofthetworadicalchains.

Thetwoendsofthemoleculearetheresiduesoftheinitiators.Biradicaltermination------

Terminationofdisproportionation----TheDegreeofPolymerizationisthenumberofthemonomericunitsoftheradicalchain.Eachmoleculecontainsainitiatorresiduesend.However,theterminatedchemicalstructuresofthetwomoleculesaredifferent,onesaturated,andtheotherunsaturated.TerminationofdisproportionatThemodesofterminationreactionsaredeterminedbythemonomerstructureandthepolymerizationtemperature.

ThemodesofterminationreacThemodesoftermination------

monomerstructure

polymerization

temperatureWithbulksubstituents-----thepossibilityofdisproportionationterminationincreases.Atlowpolymerizationtemperature----tendingtocouplingtermination.Themodesoftermination------Therelativescaleofcouplingtodisproportionationterminationis:TherelativescaleofcouplingTable3-3ModesofsomeMonomerRadicalTerminationPolymerizationcouplingDisproportionationMonomerstemperaterminationterminationStyrene0~60℃100%0%

P-chlorostyrene

60、801000P-anisole

styrene

608119805347Methylmethacrylate04060253268601585

Acrylonitrile40,60928

Vinylacetate90~100Table3-3ModesofsomeMonomTable3-4ComparisonbetweenChainPropagationandChainTerminationReactionPropagationrateconstant[L/(mol·s)]Monomerconcentration[M]:10~10-1[mol/L]Propagationrate[M][M·],10-4~106[mol/(L·s)]Rateconstantoftermination

[L/(mol·s)]Radicalconcentration[M·]:10-7~10-10[mol/L]Terminationrate[M·]2,10-8~10-10[mol/(L·s)]Table3-4Comparisonbetween(4)ChainTransferReaction

TomonomerTosolvent(ortochaintransferagent)ToinitiatorTopolymer

(4)ChainTransferReactionTo

[1]

tomonomer[2]

Tosolvent(ortochaintransferagent)[1]

tomonomer[2]Tosolven[3]

toinitiator[4]

tomolecule[3]

toinitiator[4]

tomoCharacteristicsofRadicalPolymerizationFrommicroscopicview,radicalreactionconsistsoffourelementaryreactions--initiation,propagation,termination,andtransfer.Therateofinitiationisthelowestone,whichcontrolstheoverallrateofpolymerization.Inconclusion,thecharacteristicsofradicalpolymerizationareslowinitiation,fastpropagation,fasttermination,andeasytransfer.CharacteristicsofRadicalPolThedegreeofpolymerizationincreasesonlyinthepropagationprocess.Inthesystemthereareonlymonomersandpolymers,nointermediatecompounds.ThedegreeofpolymerizationiProlongingthereactiontimeismainlytoincreasetheconversionrate,withlittleeffectsonthemolecular-weight.However,geleffectwillincreasethemolecular-weight.Asmallamount(0.01%~0.1%)ofinhibitorsisenoughtoterminatetheradicalpolymerization.ProlongingthereactiontimeRadicalPolymerizationCondensationPolymerizationElementaryreactions’rateconstantsandactivationenergyaredifferentElementaryreactions’rateconstantsandactivationenergyarealmostsamelyDegreeofpolymerizationdoesnotchangewithpolymerizationtime

Molecularweightincreasesgraduallyandafairlylongtimeisneeded.Thepolymermolecularwei-ghtiscomparativelysmallNointermediateproductswhosedegreeofpolymeri-zationareincreasingPolymerizationprocessinvolvesallmonomersTable3-5ComparisonoftheCharacteristicsofRadicalandCondensation

PolymerizationRadicalPolymerizationCondensaRadicalPolymerizationCondensationPolymerizationNoremarkablechangeofmolecularweightwithprolongedreactiontimeandhigherconver-sion.

Molecularweightofproductincreaseswithpolymerizationtimebutconversionincreaseslittle

exothermicreactionShouldbeheatedtohightemparetureAccompaniedwithrobabilitiesofbranch-ingandevencrosslinkingNobranchingRadicalPolymerizationCondensa3.2InitiatorandInitiation3.2.1TypesofInitiators3.2.2KineticsofInitiatorDecomposition(1)InitiatorDecompositionRate(2)InitiatorEfficiency(3)ChoiceofInitiator3.2.3OtherInitiation(1)Thermal-initiatedpolymerization(2)Lightinitiatedpolymerization(3)Highenergyradiationinitiatedpolymerization3.2InitiatorandInitiation3.3.2

InitiatorandInitiationInitiationisaprocesswhichconvertsolefinicmonomerstoradicals.Primaryradicalscanbeproducedthroughlight,heat,orhighenergyradiationdirectlyactingonmonomers.But,whatusedmoreoftenisinitiator.Initiatorshaveweakbonds,Thermaldecompositioncanproducetwoprimaryradicals.3.2InitiatorandInitiationIn3.2.1TypesofInitiatorsAzoinitiatorOrganicperoxideinitiatorInorganicperoxideinitiatorRedoxinitiationsystem

3.2.1TypesofInitiatorsAzoi(1)AzoInitiator

azobisisobutyronitrile(AIBN)

azo-bis-iso-heptonitrile(1)AzoInitiatorazobisisobut(2)OrganicPeroxideInitiatordibenzoylperoxidedialkylperoxide

(2)OrganicPeroxideInitiator(3)InorganicPeroxideInitiatorpersulphate(3)InorganicPeroxideInitiato(4)Redoxinitiationsystemcomponents:inorganicandorganicproperties:oleiferous

solubilityandaqueoussolubility(4)RedoxinitiationsystemcompforinstanceThermaldecompositionactivationenergyFrom200downgradeto40KJ/mol

From125downgradeto50KJ/molFrom140downgradeto50KJ/molIntheredoxsystemofaqueoussolubility,inorganicreducersareusuallyused,andasmallamountof

organicreducers,suchasalcohol,amine,andsoon,areusedtoo.

forinstanceThermaldecompositSystemsofOleiferous

SolubilityareOftenUsedInitiatorstertiaryamine,naphthenate,mercaptan,metalloorganiccompoundSystemsofOleiferousSolubiliExamplebenzoylperoxideandN,N-dimethylanilineinitiatingsystemExamplebenzoylperoxideandN,

SomemetalloorganiccompoundsTaketrialkylboranelforexample,itcanreactwiththeoxygenintheair,andformaredoxinitiationsystem,whichcaninitiateolefinicmonomerspolymerizationatalowtemperature.Somemetalloorganiccompound3.2.2

DecompositionKineticsofInitiatorIneachelementaryreactionofradicalpolymerizationInitiationrateisthelowestone.Haveastrongeffectonbothoverallpolymerizationrateandmolecularweight.ChaininitiationrateControlledbytheinitiatordecompositionrate.Bystudyingtheinitiatordecompositionrate,wecanfindthequantitativerelationshipbetweentheradicalgenerationrateandtheinitiatorconcentration,temperature,andtime.

3.2.2DecompositionKineticso(1)ThermalDecompositionRateofInitiatorInitiatorthermaldecompositionisafirstorderreaction.initiatorPrimaryradicalDecompositionrateofinitiatormol/(L·s)

Rateconstantfordecompositions-1

integratedAtagiventemperature,throughtheplotofln([I]

/[I]0)totimet

Rateexpression(1)ThermalDecompositionRate(1)ThermalDecompositionRateofInitiatortheplotofln([I]

/[I]0)totItsslope=-kd

ln([I]

/[I]0)t/min0.0-0.4-0.80.080160240320=[(-0.4)-(-0.8)]/(160-320)60=-4.2x10-5(s-1)(1)ThermalDecompositionRateThehalflifeofthefirstorderreaction-t1/2

Tothefirstorderreaction,weusuallytakethehalflifetocharacterizethereactionrate.Halflifeisthetimeneededfortheinitiatortodecomposetohalfitsoriginalconcentration.

ThehalflifeofthefirstordeArrheniusformulation

ThedependenceoftherateconstantforinitiatordecompositionontemperatureisinconformitytoArrheniusformulation.Theplotoflnkdto1/Tshouldbeastraightline.Frequency

factor-Adcanbeworkedoutfromtheintercepting.

Thedecompositionfreeenergy-Ed

canbeworkedoutfromtheslope.ArrheniusformulationThedepeTable3-6KineticParameterof

SomeTypicalInitiators

InitiatorssolventT/oCkd/S-1t1/2/hEd/kj/molAIBN502.64*10-673128.460.51.16*10-516.669.53.78*10-55.1BPObenzene602.0*10-696124.3802.5*10-57.7cuminehydroperoxide

toluene1259*10-621.41393*10-56.4potassiumPersulphate0.1mol/603.16*10-661140.2L.KOH702.33*10-58.3Table3-6KineticParametero(2)EfficiencyofInitiationOnlyapartofprimaryradicalsareeffectiveininitiatingmonomerspolymerizing.Someinitiatorsareexhausted,becauseofthesidereactionsaccompanyingwiththe

induceddecomposition,and/orthecageeffect.

Theefficiencyofinitiationisdefinedastheratioofinitiatorswhichareusedtoinitiatepolymerizationtoinitiatorsthatdecomposeinthewholeprocessofpolymerization,andisdenotedasf.

(2)EfficiencyofInitiationOnl①InducedDecompositionofInitiatorsThechaintransferreactionfromfreeradicalstoinitiatormolecules.Thetotalnumberoffreeradicalsarenotincreased,however,oneinitiatorisexhausted,whichlowerstheefficiencyofinitiation.①InducedDecompositionofInFactorsImpactontheEfficiencyofInitiationTheefficiencyofinitiationdependsontheinitiatortype.TheinduceddecompositionofAIBNisverylittle.Hydroperoxideeasilyundergoesinduceddecomposition,whichmakestheefficiencyofinitiationlowerthan0.5.FactorsImpactontheEfficienThetypeofmonomersalsoaffectstheefficiencyofinitiation.Monomerswithhighactivity,suchasstyrene,andacrylonitrile,canreactwiththefreeradicalsrapidly,andreducetheinduceddecomposition.Incontrast,theabilityofcapturingfreeradicalsisrelativelypoorforvinylacetatetypemonomers,sothevalueoffisfairlylow.ThetypeofmonomersalsoaffeDecompositionRateofInitiatorsInduceddecompositionusuallyincreasesRd,anddecreasest1/2.Whenaccompaniedbyinduceddecomposition,thedecompositionrateofinitiatorscanbeexpressedbyNormalfirstorderdecompositionrateInduceddecompositionrateBetween1and2

DecompositionRateofInitiato②CageEffectTheinitiatorconcentrationisverylowinpolymerizationsystem,sotheprimary

radicalsarebesiegedbythecageofsolventmolecules.

Inordernottoreactwitheachother,primaryradicalsmustgetoutofthecage.Thelifeexpectancyoffreeradicalsinthecageisabout

10-11~10-9S②CageEffectTheinitiatorconForexampleSidereactionsofcageeffectofAIBNForexampleSidereactionsofc

SidereactionsofcageeffectofBPOSidereactionsofcageeffect

Table3-7EfficiencyofInitiationofAIBNTheefficiencyofinitiationdependsontheinitiators,monomers,solvent,systemviscosity,andotherfactors.ThevalueoffofAIBNtodifferentmonomersMonomersf,%Monomersf,%AN~100VC70~77Styrene~80MMA52VAC68~82Table3-7EfficiencyofIniti③TheChooseofInitiatorsFirstly,accordingtothepolymerizationmethods,Initiatorswitholeiferous

solubilityareOKforbulk,solution,andsuspensionpolymerization.InitiatorswithaqueoussolubilityareOKforemulsionpolymerization.Secondly,accordingtothehalflife,

Thechoseninitiatorshouldhaveahalflifecomparativetoorofthesameorderwiththetimeofpolymerization③TheChooseofInitiatorsFirsThirdly,thedosageofinitiatorshouldbereasonable,Theinitiatorconcentration[I]affectsnotonlytherateofpolymerization,butalsothemolecularweightoftheproducts,further,ithasaoppositeeffect(aftermentioned)Theproperinitiatorconcentrationdependsonanamountofexperiments.Thirdly,thedosageofinitiatInaddition,suchasprice,source,toxicity,stability,theeffectonthecolorshadeofpolymers,andsoon,shouldalsobecountedintoconsideration.Inaddition,suchasprice,so3.2.3

Other

InitiatingAbilityThermal-initiatedpolymerizationMonomerscanpolymerizeunderthefunctionofheat,withoutinitiator,whichiscalledthermal-initiatedpolymerization,orforshort,thermalpolymerization.Photo-initiatedpolymerizationUnderlightirradiation,manyolefinicmonomerscanproducefreeradicals,whichcaninitiatepolymerization.Wecallthislightinitiatedpolymerization.Highenergyradiationinitiatedpolymerization3.2.3OtherInitiatingAbility(1)

Thermal-InitiatedPolymerizationStyreneisusedmosttostudythemechanismofthermalpolymerizationTherateofinitiationis

(1)Thermal-InitiatedPolymeriStyreneThermalPolymerizationIftheconversionofstyrenethermalpolymerizationreaches50percent400daysareneededat29℃.235minutesareneededat127℃.Only16minutesareneededat167℃.StyreneThermalPolymerization(2)Photo-InitiatedPolymerizationLightquantumenergy

Planckconstant

ThespeedoflightThefrequencyoflight

ThewavelengthoflightPhoto-initiatedpolymerizationcanbedivideintodirectlightinitiatedpolymerizationandphotosensitivepolymerization.(2)Photo-InitiatedPolyme①DirectLightInitiatedPolymerization

LightquantumMonomermoleculeExcitedst

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论