2022年重庆市彭水县八年级数学第一学期期末质量检测试题含解析_第1页
2022年重庆市彭水县八年级数学第一学期期末质量检测试题含解析_第2页
2022年重庆市彭水县八年级数学第一学期期末质量检测试题含解析_第3页
2022年重庆市彭水县八年级数学第一学期期末质量检测试题含解析_第4页
2022年重庆市彭水县八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果一元一次不等式组的解集为>3,则的取值范围是()A.>3 B.≥3 C.≤3 D.<32.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,153.如图,在中,,将沿直线翻折,点落在点的位置,则的度数是()A. B. C. D.4.若分式方程无解,则的值为()A.5 B.4 C.3 D.05.对于任何整数,多项式都能()A.被8整除 B.被整除 C.被整除 D.被整除6.已知关于x的方程=3的解是正数,那么m的取值范围为()A.m>-6且m≠-2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-27.以下运算正确的是()A. B. C. D.8.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=49.下列图形中对称轴条数最多的是()A.等边三角形 B.正方形 C.等腰三角形 D.线段10.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.411.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6 B.2、3、4 C.5、7、12 D.8、15、1712.下列说法:①无理数都是无限小数;②的算术平方根是3;③数轴上的点与实数一一对应;④平方根与立方根等于它本身的数是0和1;⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3).其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.14.将一次函数y=2x+2的图象向下平移2个单位长度,得到相应的函数表达式为____.15.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.16.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为__________.18.计算:(a-b)(a2+ab+b2)=_______.三、解答题(共78分)19.(8分)甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.20.(8分)如图,直线相交于点,分别是直线上一点,且,,点分别是的中点.求证:.21.(8分)如图,正方形的对角线交于点点,分别在,上()且,,的延长线交于点,,的延长线交于点,连接.(1)求证:.(2)若正方形的边长为4,为的中点,求的长.22.(10分)已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE

(1)求证:△ABE≌△BCD;(2)求出∠AFB的度数.23.(10分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).24.(10分)解方程:(1)4x2=25(2)(x﹣2)3+27=025.(12分)如图,是上一点,与交于点,,.线与有怎样的数量关系,证明你的结论.26.传统文化与我们生活息息相关,中华传统文化包括古文古诗、词语、乐曲、赋、民族音乐、民族戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍,求一场“民族音乐”节目演出的价格.

参考答案一、选择题(每题4分,共48分)1、C【分析】由题意不等式组中的不等式分别解出来为x>1,x>a,已知不等式解集为x>1,再根据不等式组解集的口诀:同大取大,得到a的范围.【详解】由题意x>1,x>a,∵一元一次不等式组的解集为x>1,∴a≤1.故选:C.【点睛】主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a的范围.2、B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.3、D【分析】由翻折得∠B=∠D,利用外角的性质得到∠3及∠1,再将∠B的度数代入计算,即可得到答案.【详解】如图,由翻折得∠B=∠D,∵∠3=∠2+∠D,∠1=∠B+∠3,∴∠1=∠2+2∠B,∵,∴=,故选:D.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的内角的和,熟记并熟练运用是解题的关键.4、A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:,方程两边同时乘以(x-4)得,,由于方程无解,,,,故选:.【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.5、A【分析】先对多项式进行因式分解,化为多个最简因式的乘积,再找出其中有无和选项中相同的一个,即可得出答案.【详解】原式故可知中含有因式8、、,说明该多项式可被8、、整除,故A满足,本题答案为A.【点睛】本题关键,若想让多项式被因式整除,需要将多项式化简为多个最简因式的乘积,则多项式一定可以被这几个最简因式整除.6、C【分析】先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.7、D【分析】由积的乘方运算判断A,由积的乘方运算判断B,由同底数幂的运算判断C,由积的乘方运算判断D.【详解】解:故A错误;故B错误;,故C错误;,故D正确;故选D.【点睛】本题考查的是积的乘方运算,同底数幂的运算,掌握以上运算法则是解题的关键.8、C【详解】,去分母得,3(x-1)=2x,解得x=3.经检验,x=3是方程解.故选C.9、B【分析】根据对称轴的定义逐一判断出每种图形的对称轴条数,然后即可得出结论.【详解】解:A.等边三角形有3条对称轴;B.正方形有4条对称轴;C.等腰三角形有1条对称轴;D.线段有2条对称轴.∵4>3>2>1∴正方形的对称轴条数最多故选B.【点睛】此题考查的是轴对称图形对称轴条数的判断,掌握轴对称图形的定义是解决此题的关键.10、C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=1.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.11、D【详解】解:A、22+42≠62,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;B、22+32≠42,根据勾股定理的逆定理可知三角形不是直角三角形,故错误.C、52+72≠122,根据勾股定理的逆定理可知三角形不是直角三角形,故错误;D、82+152=172,根据勾股定理的逆定理可知三角形是直角三角形,故正确.故选D.考点:勾股数.12、C【分析】根据无理数的定义判断①;根据算术平方根的定义判断②;根据实数与数轴的关系判断③;根据平方根与立方根的定义判断④;根据关于x轴对称的点的坐标特点判断⑤.【详解】①无理数都是无限小数,正确;

②的算术平方根是,错误;

③数轴上的点与实数一一对应,正确;

④平方根与立方根等于它本身的数是0,错误;

⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3),正确.

故选:C.【点睛】此题考查无理数的定义,算术平方根的定义,实数与数轴的关系,平方根与立方根的定义,关于x轴对称的点的坐标特点,解题关键在于需熟练掌握各性质定义.二、填空题(每题4分,共24分)13、0.1【分析】求出第4组数据的频数,即可确定出其频率.【详解】根据题意得:40﹣(7+8+15)=10,则第4组数据的频率为10÷40=0.1.故答案为0.1.【点睛】本题考查了频率与频数,弄清频率与频数之间的关系是解答本题的关键.14、y=2x【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.15、【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.【详解】设,其中为整数,,则,,原方程化为:,.,即,,为整数,、.当时,,此时,为非零实数,舍去;当时,此时.故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.16、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.17、【分析】根据题意以及众数和中位数的定义可得出这5个数字,然后求其平均数即可.【详解】解:由题意得:这五个数字为:1,2,3,8,8,

则这5个数的平均数为:(1+2+3+8+8)÷5=.

故答案为:.【点睛】本题考查了众数和中位数的知识,难度一般,解答本题的关键是根据题意分析出这五个数字.18、a3-b3【分析】根据多项式乘以多项式法则进行计算即可求解.【详解】故答案为:【点睛】本题考查了多项式乘以多项式法则,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.三、解答题(共78分)19、大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时【分析】设大巴车的速度为x千米/小时,则小汽车的速度为2x千米/小时,然后根据题意,列出分式方程,即可求出结论.【详解】解:设大巴车的速度为x千米/小时,则小汽车的速度为2x千米/小时由题意可知:解得:x=60经检验:x=60是原方程的解.∴小汽车的速度为2×60=120(千米/小时)答:大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.20、证明见解析.【分析】根据直角三角形的性质得到DM=BM,根据等腰三角形的三线合一证明结论.【详解】解:证明:∵BC⊥a,DE⊥b∴△EBC和△EDC都是直角三角形∵M为CE中点,∴DM=EC,BM=EC∴DM=BM∵N是DB的中点∴MN⊥BD.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.21、(1)见解析(2)【解析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=,∴MN=OM=2.【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.22、(1)见解析;(2)120°.【解析】试题分析:(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD;(2)根据△ABE≌△BCD,推出∠BAE=∠CBD,根据三角形的外角性质求出∠AFB即可.解:(1)∵△ABC是等边三角形,∴AB=BC(等边三角形三边都相等),∠C=∠ABE=60°,(等边三角形每个内角是60°).在△ABE和△BCD中,,∴△ABE≌△BCD(SAS).(2)∵△ABE≌△BCD(已证),∴∠BAE=∠CBD(全等三角形的对应角相等),∵∠AFD=∠ABF+∠BAE(三角形的一个外角等于与它不相邻的两个内角之和)∴∠AFD=∠ABF+∠CBD=∠ABC=60°,∴∠AFB=180°﹣60°=120°.考点:全等三角形的判定与性质;等边三角形的性质.23、(1)详见解析;(2)详见解析.【解析】(1)直接利用角平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论