2022年浙江省宁波市董玉娣中学数学八年级上册期末达标检测模拟试题含解析_第1页
2022年浙江省宁波市董玉娣中学数学八年级上册期末达标检测模拟试题含解析_第2页
2022年浙江省宁波市董玉娣中学数学八年级上册期末达标检测模拟试题含解析_第3页
2022年浙江省宁波市董玉娣中学数学八年级上册期末达标检测模拟试题含解析_第4页
2022年浙江省宁波市董玉娣中学数学八年级上册期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,由七个完全一样的小长方形组成的大长方形ABCD,CD=7,长方形ABCD的周长为()A.32 B.33 C.34 D.352.如果多项式分解因式的结果是,那么的值分别是()A. B. C. D.3.使分式有意义的x的取值范围为()A.x≠﹣2 B.x≠2 C.x≠0 D.x≠±24.下列图形中,是轴对称图形的是()A. B. C. D.5.如果,那么代数式的值为()A.-3 B.-1 C.1 D.36.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列命题,是真命题的是()A.三角形的外角和为B.三角形的一个外角大于任何一个和它不相邻的内角.C.两条直线被第三条直线所截,同位角相等.D.垂直于同一直线的两直线互相垂直.8.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①② B.只有①②③ C.只有③④ D.①②③④9.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)10.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠二、填空题(每小题3分,共24分)11.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).12.若二次根式是最简二次根式,则最小的正整数为______.13.克盐溶解在克水中,取这种盐水克,其中含盐__________克.14.在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE=_____°.15.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________16.若a+b=﹣3,ab=2,则_____.17.如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC=.18.如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.三、解答题(共66分)19.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(6分)如图,在中,和的平分线交于点,过点作,交于,交于,若,,试求的值.21.(6分)已知:一次函数的图象经过两点.求该一次函数表达式.22.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.23.(8分)已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是.(3)点P(a+1,b-1)与点C关于x轴对称,则a=,b=.24.(8分)综合与探究如图,在平面直角坐标系中,,点.(1)在图①中,点坐标为__________;(1)如图②,点在线段上,连接,作等腰直角三角形,,连接.证明:;(3)在图②的条件下,若三点共线,求的长;(4)在轴上找一点,使面积为1.请直接写出所有满足条件的点的坐标.25.(10分)计算与化简求值(1)计算:(2)先化简,再求值:,其中x=226.(10分)解不等式组:,并利用数轴确定不等式组的解集.

参考答案一、选择题(每小题3分,共30分)1、C【分析】由图可看出本题的等量关系:小长方形的长×2=小长方形的宽×5;小长方形的长+宽=7,据此可以列出方程组求解.【详解】设小长方形的长为x,宽为y.

由图可知,

解得.

所以长方形ABCD的长为10,宽为7,

∴长方形ABCD的周长为2×(10+7)=34,

故选C.【点睛】此题考查二元一次方程组的应用,正确的理解题意是解题的关键.2、D【分析】根据十字相乘法的分解方法和特点可知:,.【详解】∵多项式分解因式的结果是,

∴,,

∴,.

故选:D.【点睛】本题主要考查十字相乘法分解因式,型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:.3、A【分析】分式有意义要求分母不等于零.【详解】解:若分式有意义,即x+20,解得:x≠﹣2,故选A.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式概念是解题关键.4、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;

B、不是轴对称图形,故本选项不符合题意;

C、是轴对称图形,故本选项符合题意;

D、不是轴对称图形,故本选项不符合题意.

故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6、D【解析】坐标系中的四个象限分别为第一象限(x>0,y>0);第二象限(x>0,y<0);第三象限(x<0,y<0);第四象限(x<0,y<0).所以P在第四象限.7、B【分析】根据三角形的性质,平行与垂直的性质逐一判断即可.【详解】解:A.三角形的外角和为,故错误;B.三角形一个外角等于与它不相邻的两个内角的和,所以它大于任何一个和它不相邻的内角,故正确;C.两条平行线被第三条直线所截,同位角相等,故错误;D.垂直于同一直线的两直线互相平行,故错误.故选:B.【点睛】本题通过判断命题的真假考查了几何基本图形的性质定理,理解掌握相关性质是解答关键.8、A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【详解】∵∠ACB=90°,∠ABC=30°,

∴∠BAC=60°,AC=AB,

∵△ACD是等边三角形,

∴∠ACD=60°,

∴∠ACD=∠BAC,

∴CD∥AB,

∵F为AB的中点,

∴BF=AB,

∴BF∥CD,CD=BF,

∴四边形BCDF为平行四边形,②正确;

∵四边形BCDF为平行四边形,

∴DF∥BC,又∠ACB=90°,

∴AC⊥DF,①正确;

∵DA=CA,DF=BC,AB=BE,BC+AC>AB

∴DA+DF>BE,③错误;

设AC=x,则AB=2x,

S△ACD=,④错误,

故选:A.【点睛】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.9、D【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【详解】解:方程两边同乘x(x+4),得2x=1故选D.10、A【分析】根据分式有意义,分母不等于0列不等式求解即可.【详解】由题意得,x-1≠0,解得x≠1.故答案为:A.【点睛】本题考查了分式有意义的条件:分式有意义⇔分母不为零,比较简单.二、填空题(每小题3分,共24分)11、变小【分析】根据平均数的求法先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【详解】解:∵李阳再跳一次,成绩为7.7m,∴这组数据的平均数是=7.7,∴这7次跳远成绩的方差是:S2=[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=,∴方差变小;故答案为:变小.【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.12、1【分析】根据最简二次根式的定义求解即可.【详解】解:∵a是正整数,且是最简二次根式,∴当a=1时,,不是最简二次根式,当a=1时,,是最简二次根式,则最小的正整数a为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.13、【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【详解】解:该盐水的浓度为:,故这种盐水m千克,则其中含盐为:m×=克.故答案为:.【点睛】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.14、1【分析】由折叠的性质可知:∠B=∠MGB,∠C=∠EGC,根据三角形的内角和为180°,可求出∠B+∠C的度数,进而得到∠MGB+∠EGC的度数,问题得解.【详解】解:∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=1°,∴∠B+∠C=180°﹣1°=98°,∴∠MGB+∠EGC=∠B+∠C=98°,∴∠MGE=180°﹣98=1°,故答案为:1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到∠MGB+∠EGC的度数.15、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【点睛】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.16、5【分析】将a+b=﹣3两边分别平方,然后利用完全平方公式展开即可求得答案.【详解】∵a+b=﹣3,∴(a+b)2=(﹣3)2,即a2+2ab+b2=9,又∵ab=2,∴a2+b2=9-2ab=9-4=5,故答案为5.【点睛】本题考查了根据完全平方公式的变形求代数式的值,熟练掌握完全平方公式的结构特征是解题的关键.17、80°.【解析】试题分析:∵AB∥CD,∠B=35°,∴∠C=35°,∵∠D=45°,∴∠AEC=∠C+∠D=35°+45°=80°,故答案为80°.考点:1.平行线的性质;2.三角形的外角性质.18、40°【解析】依据三角形内角和定理,即可得到∠BAC的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG的度数.【详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°,∴∠EAG=110°−(25°+45°)=40°,故答案为:40°【点睛】此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC的度数三、解答题(共66分)19、70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.20、1【分析】根据角的平分线性质和平行线的性质来证明△EBO,△CFO是等腰三角形,BE=OE=3,OF=FC=1.【详解】∵平分,∴平分,∴又,∴,∴,∴∵,∴,∴【点睛】本题考查了角的平分线的性质和平行线的性质.21、y=x+2【分析】将点M、N的坐标代入解析式,求出方程组的解即可得到函数表达式.【详解】将点M、N的坐标代入解析式,得,解得:则该函数表达式为:.【点睛】此题考查待定系数法求函数解析式,掌握正确的解法即可正确解答.22、证明过程见解析【解析】试题分析:由可得,由,根据等量代换可得,从而,接下来,依据垂线的定义可得到AB和CD的位置关系.证明:在中,,∴,又∵,∴,∴,∴.点睛:本题主要就是依据三角形的内角和定理和垂线的定义求解的.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.23、(1)答案见解析,A1(-1,-4)、B1(-5,-4)、C1(-4,-1);(1)6;(3)3,1.【解析】试题分析:(1)先得到△ABC关于y轴对称的对应点,再顺次连接即可;(1)利用矩形的面积减去三个顶点上三角形的面积即可;(3)由关于x轴对称两点横坐标相等,纵坐标互为相反,即可求得a,b的值.试题解析:(1)如图所示:A1(-1,-4)、B1(-5,-4)、C1(-4,-1);(1)S△ABC=4×3-×3×3-×3×1=6;(3)∵P(a+1,b-1)与点C(4,-1)关于x轴对称,∴,解得,故答案为:3,1.点睛:本题主要考查了利用轴对称变换进行作图,解题时注意:先找到图形的关键点,分别把这几个点轴对称,在顺次连接对应点即可得到所求图形.24、(1)(1,3);(1)答案见解析;(3)OD=1(4)F的坐标是或【分析】(1)过C点作轴,垂足为F,在证明了后可得到线段BM、CM的长,再求出线段OM的长,便可得点C的坐标;(1)根据和等式的基本性质证明,再利用“SAS”定理证明后便可得到;(3)三点共线时,可推导出轴,从而有;(4)根据点F在y轴上,所以中BF上的高总是OA=1,在此处只需要利用其面积为1和三角形的面积计算:,分点F在点B的上方和下方两种情况讨论可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论