2023届内蒙古自治区呼和浩特市开来中学数学八年级第一学期期末联考试题含解析_第1页
2023届内蒙古自治区呼和浩特市开来中学数学八年级第一学期期末联考试题含解析_第2页
2023届内蒙古自治区呼和浩特市开来中学数学八年级第一学期期末联考试题含解析_第3页
2023届内蒙古自治区呼和浩特市开来中学数学八年级第一学期期末联考试题含解析_第4页
2023届内蒙古自治区呼和浩特市开来中学数学八年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若方程组的解是,则的值分别是()A.2,1 B.2,3 C.1,8 D.无法确定2.在下列长度的四根木棒中,能与、长的两根木棒钉成一个三角形的是()A. B. C. D.3.若分式的值为则()A. B. C.或 D.或4.已知,如图,D、B、C、E四点共线,∠ABD+∠ACE=230°,则∠A的度数为()A.50° B.60° C.70° D.80°5.若分式在实数范围内有意义,则的取值范围为()A. B. C. D.且6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.177.石墨烯目前是世界上最稀薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅米,将这个数用科学计算法表示为()A. B. C. D.8.等腰三角形的两边长分别为3cm,6cm,则该三角形的周长为()A.12cm B.15cm C.12cm或15cm D.以上都不对9.在四个数中,满足不等式的有()A.1个 B.2个 C.3个 D.4个10.-9的立方根为()A.3 B.-3 C.3或-3 D.11.如图,在中,,以AB,AC,BC为边作等边,等边.等边.设的面积为,的面积为,的面积为,四边形DHCG的面积为,则下列结论正确的是()A. B.C. D.12.在实数中,无理数有()A.0个 B.1个 C.2个 D.3个二、填空题(每题4分,共24分)13.要使分式有意义,则x的取值范围为_____.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.15.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.16.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)17.若分式的值为0,则y的值等于_______.18.已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为_________.三、解答题(共78分)19.(8分)解不等式:(1)不等式(2)解不等式组:并将,把解集表示在数轴上20.(8分)计算(1)-+(2)21.(8分)解方程:=1.22.(10分)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.23.(10分)为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?24.(10分)已知:A(1,0),B(0,4),C(4,2).(1)在坐标系中描出各点(小正方形网格的长度为单位1),画出△ABC;(三点及连线请加黑描重)(2)若△A1B1C1与△ABC关于y轴对称,请在图中画出△A1B1C1;(3)点Q是x轴上的一动点,则使QB+QC最小的点Q坐标为.25.(12分)在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是.(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.26.已知与成正比例,当时,.(1)求与的函数关系式;(2)当时,求的取值范围.

参考答案一、选择题(每题4分,共48分)1、B【分析】方程组的解就是能够使方程组中的方程同时成立的未知数的解,把方程组的解代入方程组即可得到一个关于m,n的方程组,即可求得m,n的值.【详解】根据题意,得,解,得m=2,n=1.故选:B.【点睛】本题主要考查了方程组解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解.2、C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则

9-4<x<4+9

即5<x<13,

∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,

故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3、A【分析】化解分式方程,即可求解,最后检验.【详解】,,,解得:x=2,经检验,x=2是原方程的解,故选:A.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题关键,特别注意最后需检验.4、A【解析】由∠ABD+∠ACE=230°,得出∠ABC+∠ACB=130°,在△ABC中,利用内角和等于180°即可.【详解】∵∠ABD+∠ACE=230°∴∠ABC+∠ACB=130°∴在△ABC中,∠ABC+∠ACB+∠A=180°,即∠A=50°.故答案选:A.【点睛】本题考查的知识点是三角形内角和,解题的关键是熟练的掌握三角形内角和.5、B【分析】根据分式意义的条件即可求出答案.【详解】解:x-3≠0,

∴x≠3

故答案为x≠3【点睛】本题考查分式有意义的条件,解题的关键正确理解分母不为0是分式有意义的条件,本题属于基础题型.6、B【分析】根据线段垂直平分线的性质得AE=BE,然后利用等量代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【详解】解:∵DE垂直平分AB,

∴AE=BE,

∴△ACE的周长=AC+CE+AE

=AC+CE+BE

=AC+BC

=5+6

=1.

故选B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7、C【分析】根据科学记数法的表示形式对数值进行表示即可.【详解】解:=,故选:C.【点睛】本题考查了科学记数法,掌握科学记数法的表示形式是解题关键.8、B【分析】分两种情况:底边为3cm,底边为6cm时,结合三角形三边的关系,根据三角形的周长公式,可得答案.【详解】底边为3cm,腰长为6cm,这个三角形的周长是3+6+6=15cm,底边为6cm,腰长为3cm,3+3=6,不能以6cm为底构成三角形;故答案为:B.【点睛】本题考查了等腰三角形的性质,利用了等腰三角形的性质,三角形三边的关系,分类讨论是解题关键.9、B【分析】分别用这四个数与进行比较,小于的数即是不等式的解.【详解】解:∵,,,∴小于的数有2个;∴满足不等式的有2个;故选择:B.【点睛】本题考查了不等式的解,以及比较两个实数的大小,解题的关键是掌握比较两个有理数的大小的法则.10、D【分析】根据立方根的定义进行计算即可得解.【详解】-9的立方根是.故选:D.【点睛】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.11、D【分析】由,得,由,,是等边三角形,得,,,即,从而可得.【详解】∵在中,,∴,过点D作DM⊥AB∵是等边三角形,∴∠ADM=∠ADB=×60°=30°,AM=AB,∴DM=AM=AB,∴同理:,,∴∵,∴,故选D.【点睛】本题主要考查勾股定理的应用和等边三角形的性质,根据勾股定理和三角形面积公式得到,是解题的关键.12、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在实数中,无理数有,共2个.故选C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题(每题4分,共24分)13、x≠﹣2【解析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.14、1【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=1°,故答案为1.【点睛】本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.15、【分析】

【详解】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故答案为.16、=【分析】探究规律后,写出第n个等式即可求解.【详解】解:…则第n个等式为故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.17、1【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【详解】根据题意,得且.所以.

故答案是:1.【点睛】本题主要考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.18、25o【解析】试题分析:根据题意给出的已知条件可以得出△ABC和△ADE全等,从而得出∠B=∠D=25°.三、解答题(共78分)19、(1);(2),作图见解析【分析】(1)按照解一元一次不等式的基本步骤求解即可;(2)先分别求解不等式,再在数轴上画出对应解集,最终写出解集即可【详解】(1)(2),由①解得:,由②解得:,即:,在数轴上表示如图:∴不等式组的解集为:【点睛】本题考查不等式与不等式组的求解,及在数轴上表示解集,准确求解不等式,并注意数轴上表示解集的细节是解题关键20、(1);(2)1.【分析】(1)先化简二次根式,再计算二次根式的乘法与加减法即可得;(2)先化简二次根式,再计算二次根式的乘除法与加法即可得.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了二次根式的加减乘除运算,熟练掌握运算法则是解题关键.21、x=【解析】分析:根据分式方程的解法,先化为整式方程,然后解整式方程,再检验即可求解.详解:去分母得x﹣2=1(x﹣1),解得x=,检验:当x=时,x﹣1≠0,则x=是原方程的解,所以原方程的解为x=.点睛:此题主要考查了分式方程的解法,关键是把方程化为整式方程求解,注意最后应定要进行检验是否为分式方程的解.22、(1)证明见解析;(2)两堵木墙之间的距离为.【分析】(1)根据同角的余角相等可证,然后利用AAS即可证出;(2)根据题意即可求出AD和BE的长,然后根据全等三角形的性质即可求出DC和CE,从而求出DE的长.【详解】(1)证明:由题意得:,,∴,∴,∴在和中,∴;(2)解:由题意得:,∵,∴,∴,答:两堵木墙之间的距离为.【点睛】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.23、(1)汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,列方程得,解得,经检验是原方程的解,则甲、乙两地之间的距离是千米.答:汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是千米.(2)汽车行驶中每千米用油的费用为元.设汽车用电行驶,可得,解得,答:至少需要用电行驶81千米.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24、(1)答案见解析;(2)答案见解析;(3)(,0)【分析】(1)依据A(1,0),B(0,4),C(4,2),即可描出各点,画出△ABC;(2)依据轴对称的性质,即可得到△A1B1C1;(3)作点C关于x轴的对称点C'(4,﹣2),连接BC',依据两点之间,线段最短,即可得到点Q的位置.【详解】解:(1)如图所示,△ABC即为所求;(2)如图所示,△A1B1C1即为所求;(3)作点C关于x轴的对称点C'(4,﹣2),连接BC',交x轴于Q,由B,C'的坐标可得直线BC'的解析式为y=﹣x+4,令y=0,则x=,∴使QB+QC最小的点Q坐标为(,0).故答案为:(,0).【点睛】本题主要考查了利用轴对称变换进行作图,画一个图形的轴对称图形时,一般先从一些特殊的对称点开始.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.25、(1)1<AD<7;(2)①2<EF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论