版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列四个手机APP图标中,是轴对称图形的是()A. B. C. D.2.将下列长度的三根木棒首尾顺次连接,能组成三角形的是()A.1,2,4 B.8,6,4 C.12,6,5 D.3,3,63.由方程组可得出与之间的关系是()A. B.C. D.4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(
)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m5.以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.6.若分式的值为0,则x的值为()A.-2 B.0 C.2 D.±27.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.68.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.649.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()A.310元 B.300元 C.290元 D.280元10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]11.以下列各组数据为边长作三角形,其中能组成直角三角形的是().A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,1312.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.192二、填空题(每题4分,共24分)13.在平面直角坐标系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为________________.14.如图,已知,AB=BC,点D是射线AE上的一动点,当BD+CD最短时,的度数是_________.15.我们把[a,b]称为一次函数y=ax+b的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n的值为_____.16.如图,中,,,DE是BC边上的垂直平分线,的周长为14cm,则的面积是______.17.计算____.18.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.三、解答题(共78分)19.(8分)绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树800棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前5天完成任务,则原计划每天种树多少棵?20.(8分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:,即③把方程①代入③得:,∴,所代入①得,∴方程组的解为,请你解决以下问题:(1)模仿小军的“整体代换”法解方程组,(2)已知满足方程组,求的值和的值.21.(8分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.22.(10分)如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(2,3)、B(﹣1,2),将△ABC平移得到△A′B′C′,使得点A的对应点A′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系;(2)画出△A′B′C′,并写出点C′的坐标为.23.(10分)已知:如图,交于点,连结.(1)求证:.(2)延长交于点,若,求的度数.24.(10分)已知:从边形的一个顶点出发共有条对角线;从边形的一个顶点出发的所有对角线把边形分成个三角形;正边形的边长为,周长为.求的值.25.(12分)小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是_______,NB与MC的数量关系是_______;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由。(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.26.教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.1.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.已知:如图,垂足为点,点是直线上的任意一点.求证:.分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.求证:.(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称定义进行判断即可.【详解】解:根据轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.由此定义可知,B满足定义条件.故本题正确答案为B.【点睛】本题主要考查轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.2、B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、6+4>8,能组成三角形,故此选项正确;C、6+5<12,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选B.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3、B【分析】根据题意由方程组消去m即可得到y与x的关系式,进行判断即可.【详解】解,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.4、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将1.11111111134用科学记数法表示,故选C.考点:科学记数法5、B.【解析】试题分析:根据轴对称图形的概念:A、C、D都可以沿某一直线折叠后重合,是轴对称图形.故选B.考点:轴对称图形.6、C【解析】由题意可知:,解得:x=2,故选C.7、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.8、C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.9、B【解析】试题分析:观察图象,我们可知当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,即可得到结果.由图象可知,当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,因此营销人员没有销售业绩时收入是800-500=1.故选B.考点:本题考查的是一次函数的应用点评:本题需仔细观察图象,从中找寻信息,并加以分析,从而解决问题.10、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象11、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A、;B、;C、;D、.根据勾股定理7,24,25能组成直角三角形.故选C.考点:勾股定理的逆定理.12、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.二、填空题(每题4分,共24分)13、(-3,0)或(5,0)或(-5,4)【解析】根据题意画出符合条件的三种情况,根据图形结合平行四边形的性质、A、B、C的坐标求出即可.【详解】解:
如图有三种情况:①平行四边形AD1CB,
∵A(1,0),B(
0,2),C(-4,2),
∴AD1=BC=4,OD1=3,
则D的坐标是(-3,0);
②平行四边形AD2BC,
∵A(1,0),B(
0,2),C(-4,2),
∴AD2=BC=4,OD2=1+4=5,
则D的坐标是(5,0);
③平行四边形ACD3B,
∵A(1,0),B(
0,2),C(-4,2),
∴D3的纵坐标是2+2=4,横坐标是-(4+1)=-5,
则D的坐标是(-5,4),
故答案为(-3,0)或(5,0)或(-5,4).【点睛】本题考查了坐标与图形性质,平行四边形的性质等知识点,解题的关键是掌握①数形结合思想的运用,②分类讨论方法的运用.14、【分析】作CO⊥AE于点O,并延长CO,使,通过含30°直角三角形的性质可知是等边三角形,又因为AB=BC,根据等腰三角形三线合一即可得出,则答案可求.【详解】作CO⊥AE于点O,并延长CO,使,则AE是的垂直平分线,此时BD+CD最短∴是等边三角形∵AB=BC故答案为:90°.【点睛】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.15、﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.16、1【解析】根据线段垂直平分线性质得出BD=DC,求出AB+AC=14cm,求出AB,代入×AB×AC求出即可.【详解】解:∵DE是BC边上的垂直平分线,∴BD=DC,∵△ABD的周长为14cm,∴BD+AD+AB=14cm,∴AB+AD+CD=14cm,∴AB+AC=14cm,∵AC=8cm,∴AB=6cm,∴△ABC的面积是AB×AC=×6×8=1(cm2),故答案为:1.【点睛】本题考查了三角形的面积和线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.17、【分析】设把原式化为,从而可得答案.【详解】解:设故答案为:【点睛】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.18、1【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:×DE×BC=×10×3=1,故答案为1.考点:角平分线的性质.三、解答题(共78分)19、原计划每天种树80棵.【分析】设原计划每天种树x棵.
根据工作量=工作效率×工作时间列出方程,解答即可.【详解】(1)设:原计划每天种树x棵解得:x=80经检验,x=80是原分式方程的解,且符合题意答:原计划每天种树80棵.【点睛】此题主要考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.工程类问题主要用到公式:工作总量=工作效率×工作时间.20、(1);(2);【分析】(1)按照题中给出的“整体代换”的方法和步骤解方程组即可;(2)通过整体代换法求出,,再通过完全平方公式求出,则答案可求.【详解】(1)把方程②变形:③,把①代入③得:,即,把代入①得:,则方程组的解为;(2)由①得:,即③,把③代入②得:,解得:,则;∵,∴,∴或,则【点睛】本题主要考查整体代换法解方程组,掌握整体代换法的步骤和方法是解题的关键.21、结论:(1)60;(2)AD=BE;应用:∠AEB=90°;AE=2CM+BE;【详解】试题分析:探究:(1)通过证明△CDA≌△CEB,得到∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°=60°;(2)已证△CDA≌△CEB,根据全等三角形的性质可得AD=BE;应用:通过证明△ACD≌△BCE,得到AD=BE,∠BEC=∠ADC=135°,所以∠AEB=∠BEC-∠CED=135°-45°=90°;根据等腰直角三角形的性质可得DE=2CM,所以AE=DE+AD=2CM+BE.试题解析:解:探究:(1)在△CDA≌△CEB中,AC=BC,∠ACD=∠BCE,CD=CE,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°=60°;(2)∵△CDA≌△CEB,∴AD=BE;应用:∠AEB=90°;AE=2CM+BE;理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.考点:等边三角形的性质;等腰直角三角形的性质;全等三角形的判定和性质.22、(1)见解析;(2)(﹣3,﹣4)【分析】(1)根据点A和点B的坐标可建立平面直角坐标系;(2)利用平移变换的定义和性质可得答案.【详解】解:(1)如图所示,(2)如图所示,△A′B′C′即为所求,其中点C′的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点睛】本题考查的知识点是作图-平移变换,找出三角形点A的平移规律是解此题的关键.23、(1)见解析;(2)【分析】(1)根据题意,利用公共角的条件通过边角边的证明方法求解即可得解;(2)根据三角形全等的性质及内角和定理进行计算即可得解.【详解】(1)即;(2)如下图:,.【点睛】本题主要考查了全等三角形的判定与形式,熟练掌握全等三角形的证明是解决本题的关键.24、-1【分析】根据题意,由多边形的性质,分析可得答案.【详解】依题意有n=4+3=7,m=6+2=8,t=63÷7=9,则(n﹣m)t=(7﹣8)9=﹣1.【点睛】本题考查了多边形的性质,从n边形的一个顶点出发,能引出(n﹣3)条对角线,一共有条对角线,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.这些规律需要学生牢记.25、(一)(1)∠NAB=∠MAC,BN=MC;(2)成立,理由见解析;(二)线段B1Q长度的最小值为1.【分析】(一)(1)由旋转知,AM=AN,∠BAC=∠NAM,进而得出∠MAC=∠NAB,判断出△CAM≌△BAN,即可得出结论;(2)由旋转知,AM=AN,∠BAC=∠NAM,进而得出∠MAC=∠NAB,判断出△CAM≌△BAN,即可得出结论;(二)取A1C1的中点O,则C1O=A1O=A1C1,再判断出A1B1=A1C1,进而得出C1O=A1O=A1B1=1,再判断出∠B1A1C1=∠QA1P,进而判断出△PA1O≌△QA1B1,得出OP=B1Q,再判断出OP⊥B1C1时,OP最小,即可得出结论.【详解】解:(一)(1)由旋转知,AM=AN,∠BAC=∠NAM,
∴∠BAC-∠BAM=∠NAM-∠BAM,
即:∠MAC=∠NAB
∵AB=AC,
∴△CAM≌△BAN(SAS),
∴MC=NB,
故答案为∠NAB=∠MAC,MC=NB;(2)(1)中结论仍然成立,
理由:由旋转知,AM=AN,∠BAC=∠NAM,
∴∠BAC-∠BAM=∠NAM-∠BAM,
即:∠MAC=∠NAB,
∵AB=AC,
∴△CAM≌△BAN(SAS),
∴MC=NB;(二)如图3,取A1C1的中点O,则C1O=A1O=A1C1,
在Rt△A1B1C1中,∠C1=30°,
∴A1B1=A1C1,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030智慧酒店行业市场深度调研及发展趋势与投资战略研究报告
- 2025-2030智慧税务行业投资分析及管理策略报告
- 2025-2030智慧社区服务体系(CSS)行业市场供需分析及投资评估规划分析研究报告
- 2025-2030智慧社区产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030智慧物流服务产业市场深入研究及未来走向与投资价值分析报告
- 2025-2030智慧物流体系建设投资增长分析及融资模式策略研究报告
- 2025-2030智慧灌溉行业市场供需分析及投资评估规划前景研究报告
- 2025-2030智慧消防行业发展趋势技术应用市场前景与投资规划分析
- 2025-2030智慧消防产业消防设备智能化与市场动态研究分析报告
- 2025-2030智慧污水处理行业市场供需分析及投资评估规划分析研究报告
- 2025广东东莞市寮步镇人民政府招聘专职安全员10人考前自测高频考点模拟试题及答案详解一套
- 2024石家庄市国企招聘考试真题及答案
- 远程机器人手术操作指南(2025版)
- 2025天津宏达投资控股有限公司及所属企业招聘工作人员笔试模拟试题及答案解析
- 2025年度北京市公务员录用考试行政职业能力测验试卷真题及答案
- 五年(2021-2025)高考地理真题分类汇编:专题12 交通(全国)(原卷版)
- 消防证考试题目及答案
- 麦肯锡思维培训
- 新能源汽车企业财务风险分析及防范研究-以北汽蓝谷为例
- DB11-T 941-2021 无机纤维喷涂工程技术规程
- 隧道正洞机械开挖(电子雷管引爆)项目专项预算定额
评论
0/150
提交评论