2023届山东省青岛市超银中学数学八年级第一学期期末复习检测模拟试题含解析_第1页
2023届山东省青岛市超银中学数学八年级第一学期期末复习检测模拟试题含解析_第2页
2023届山东省青岛市超银中学数学八年级第一学期期末复习检测模拟试题含解析_第3页
2023届山东省青岛市超银中学数学八年级第一学期期末复习检测模拟试题含解析_第4页
2023届山东省青岛市超银中学数学八年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在-,-π,0,3.14,0.1010010001,-3中,无理数的个数有()A.1个 B.2个 C.3个 D.4个2.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.3.下列运算正确的是()A. B.C. D.4.如图,在中,,,以点为圆心,小于的长为半径作弧,分别交,于两点;再分别以点为圆心,大于长为半径作弧,两弧交于点,作射线交于点.若的面积为9,则的面积为()A.3 B. C.6 D.5.数字用科学记数法表示为()A. B. C. D.6.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.7.若,则的值为()A.5 B.0 C.3或-7 D.48.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.9.下列运算正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a2•a3=a610.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9二、填空题(每小题3分,共24分)11.已知是关于的二元一次方程的一个解,则=___.12.如果多边形的每个内角都等于,则它的边数为______.13.能使分式的值为零的x的值是______.14.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.15.如图,,分别平分与,,,则与之间的距离是__________.16.将0.000056用科学记数法表示为____________________.17.若4a2+b2﹣4a+2b+2=0,则ab=_____.18.如图,在中,、的垂直平分线、相交于点,若等于76°,则____________.三、解答题(共66分)19.(10分)(1)先化简,再求值:,其中.(2)分解因式20.(6分)已知:在中,,点在上,连结,且.(1)如图1,求的度数;(2)如图2,点在的垂直平分线上,连接,过点作于点,交于点,若,,求证:是等腰直角三角形;(3)如图3,在(2)的条件下,连接,过点作交于点,且,若,求的长.21.(6分)如图,已知△ABC的其中两个顶点分别为:A(-4,1)、B(-2,4).(1)请根据题意,在图中建立平面直角坐标系,并写出点C的坐标;(2)若△ABC每个点的横坐标保持不变,纵坐标分别乘-1,顺次连接这些点,得到△A1B1C1,画出△A1B1C1,判断△A1B1C1与△ABC有怎样的位置关系?并写出点B的对应点B1的坐标.22.(8分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)23.(8分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.24.(8分)某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.类别价格篮球排球进价(元/个)8050售价(元/个)9560(1)求商店购进篮球和排球各多少个?(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.25.(10分)先化简再求值:()÷,其中x=(﹣1)1.26.(10分)如图,在直角坐标系中,.(1)在图中作出关于轴对称的图形;(2)写出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.3、D【解析】解:A.(2)2=12,故A错误;B.=,故B错误;C.=5,故C错误;D.=,故D正确.故选D.4、A【分析】根据作图方法可知是的角平分线,得到,已知,由等角对等边,所以可以代换得到是等腰三角形,由30度角所对的直角边是斜边的一半、三角形的面积公式,可知两个三角形等高,用底边之间的关系式来表示两个三角形的面积的关系,即可求出结果.【详解】,,,根据作图方法可知,是的角平分线,,,点在的中垂线上,在,,,,又,,,故选:A【点睛】根据作图的方法结合题目条件,可知是的角平分线,由等角对等边,所以是等腰三角形,由于所求三角形和已知三角形同高,底满足,所以三角形面积是三角形的,可求得答案.5、D【解析】根据科学记数法可表示为:(,n为整数)表达即可.【详解】解:,故答案为:D.【点睛】本题考查了绝对值小于1的科学记数法的表示,熟记科学记数法的表示方法是解题的关键.6、D【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.7、C【分析】根据完全平方公式的变形即可求解.【详解】∵∴=±5,∴的值为3或-7故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.8、A【分析】首先根据勾股定理求出斜边的长,再根据三角形等面积法求出则点到的距离即可.【详解】设点到距离为.在中,,∴∵,∴∵∴.故选:A.【点睛】本题考查勾股定理应用,抓住三角形面积为定值这个等量关系是解题关键.9、B【解析】根据乘方的运算法则与完全平方公式进行计算即可.【详解】A.(2x5)2=4x10,故本选项错误;B.(﹣3)﹣2=,正确;C.(a+1)2=a2+2a+1,故本选项错误;D.a2•a3=a5,故本选项错误.故选:B.【点睛】本题考查乘方的运算,完全平方公式.熟练掌握其知识点是解此题的关键.10、D【解析】试题分析:设内角和为1010°的多边形的边数是n,则(n﹣2)•110°=1010°,解得:n=1.则原多边形的边数为7或1或2.故选D.考点:多边形内角与外角.二、填空题(每小题3分,共24分)11、-5【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:-m-2=3,解得m=-5,故答案为:-5.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12、1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13、1【分析】根据分式值为零,分子为零且分母不为零求解.【详解】解:∵分式的值为0,∴|x|-1=0,x+1≠0解得x=1.故答案为:1.【点睛】本题考查分式的值为零的条件.14、且.【分析】根据一元二次方程的定义,得到m-2≠0,解之,根据“一元二次方程(m-2)x2+x-1=0有两个不相等的实数根”,结合判别式公式,得到一个关于m的不等式,解之,取两个解集的公共部分即可.【详解】根据题意得:,解得:,解得:,综上可知:且,故答案为:且.【点睛】本题考查了根的判别式,一元二次方程的定义,正确掌握根的判别式公式,一元二次方程的定义是解题的关键.15、1【分析】过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.【详解】解:过点G作GF⊥BC于F,交AD于E,

∵AD∥BC,GF⊥BC,

∴GE⊥AD,

∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,

∴GE=GH=4,

∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,

∴GF=GE=4,

∴EF=GF+GE=1,

故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16、【分析】根据科学记数法的表示方法解答即可.【详解】解:0.000056=.故答案为:.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、﹣0.5【分析】利用完全平方公式进行因式分解得到2个完全平方式,通过平方的非负性质推导出,n个非负项相加为0,则每一项为0.【详解】解:∵,∴,∴解得,∴.故答案为:.【点睛】利用完全平方公式因式分解,通过平方非负的性质为本题的关键.18、14°【分析】连接OA,根据垂直平分线的性质可得OA=OB,OA=OC,然后根据等边对等角和等量代换可得∠OAB=∠OBA,∠OAC=∠OCA,OB=OC,从而得出∠OBC=∠OCB,∠OBA+∠OCA=76°,然后根据三角形的内角和列出方程即可求出.【详解】解:连接OA∵、的垂直平分线、相交于点,∴OA=OB,OA=OC∴∠OAB=∠OBA,∠OAC=∠OCA,OB=OC∴∠OBC=∠OCB∵=76°∴∠OAB+∠OAC=76°∴∠OBA+∠OCA=76°∵∠BAC+∠ABC+∠ACB=180°∴76°+∠OBA+∠OBC+∠OCA+OCB=180°∴76°+76°+2∠OBC=180°解得:∠OBC=14°故答案为:14°.【点睛】此题考查的是垂直平分线的性质和等腰三角形的性质,掌握垂直平分线的性质和等边对等角是解决此题的关键.三、解答题(共66分)19、(1),3;(2).【分析】(1)先将原式去掉括号再化简,最后代入求值即可;(2)先提取公因式,然后利用完全平方公式进一步因式分解即可.【详解】(1)==,∵,∴原式===3;(2)==.【点睛】本题主页面考查了整式的化简求值与因式分解,熟练掌握相关方法是解题关键.20、(1);(2)证明见解析;(3).【分析】(1)根据已知推出,然后利用三角形外角的性质有,则,然后利用即可求解;(2)由垂直平分线的性质得到,从而有,根据同位角相等,两直线平行可得出,进而得出,然后通过等量代换得出,所以,,则结论可证;(3)首先证明,则有,,,然后证明得出,然后通过对角度的计算得出,,同理证明点在的垂直平分线上,则有,所以,最后通过证明,得出,则答案可解.【详解】(1)(2)∵点在线段的垂直平分线上.又∴是等腰直角三角形(3)如图,过作交的延长线于点于点,连接,令,与的交点分别为点,.在四边形中,又又又又又又∴点在的垂直平分线上同理点在的垂直平分线上【点睛】本题主要考查全等三角形的判定及性质,平行线的性质,角的和与差,掌握全等三角形的判定及性质,平行线的性质,角的和与差是解题的关键.21、(1)图见解析,点C的坐标为(3,3);(2)图见解析,B1的坐标为(-2,-4)【分析】(1)直接利用已知点建立平面直角坐标系进而得出答案;(2)利用坐标之间的关系得出△A1B1C1各顶点位置,进而得出答案.【详解】解:(1)平面直角坐标系如图所示.点C的坐标为(3,3).(2)△A1B1C1如图所示.△A1B1C1与△ABC关于x轴对称.点B的对应点B1的坐标为(-2,-4).【点睛】此题主要考查了轴对称变换,正确得出各对应点位置是解题关键.22、见解析.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.23、(1).﹣2,4;(2).﹣3m;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP的面积表示出来,列方程求解即可.【详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=AB·MC=×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP=|a|,∴S△ABP=AB·OP=×6×|a|=3|a|,∴3|a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【点睛】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.24、(1)商店购进篮球120个,排球80个;(2)王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论