




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列方程式属于一元二次方程的是()A. B. C. D.2.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤13.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为A.1或 B.-或 C. D.14.如图,这个几何体的左视图是()A. B. C. D.5.已知,,那么ab的值为()A. B. C. D.6.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.17.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25° B.30° C.40° D.45°8.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上9.如果点与点关于原点对称,则()A.8 B.2 C. D.10.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.cos30°=__________12.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种13.已知x=2是方程x2-a=0的解,则a=_______.14.一元二次方程的根是_____.15.如图,是半圆的直径,,则的度数是_______.16.若,则的值为_____.17.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.三、解答题(共66分)19.(10分)两个相似多边形的最长边分别为6cm和8cm,它们的周长之和为56cm,面积之差为28cm2,求较小相似多边形的周长与面积.20.(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.21.(6分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点,点和点的坐标;(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?22.(8分)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.23.(8分)画出如图所示几何体的三视图24.(8分)(特例感知)(1)如图①,∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD=3,BD=4,则点D到直线AB的距离为.(类比迁移)(2)如图②,∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为E,探索线段AB、BE、BC之间的数量关系,并说明理由.(问题解决)(3)如图③,四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,则△ABC的内心与外心之间的距离为.25.(10分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.(1)求证:AB2=AE·AD;(2)若AE=2,ED=4,求图中阴影的面积.26.(10分)如图,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A、P两点.(1)求抛物线的函数关系式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.2、B【分析】根据反比例函数的性质解答即可.【详解】∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1.故选B.【点睛】本题考查了反比例函数的图象与性质,反比例函数y(k≠0),当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解答本题的关键.3、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.4、B【解析】根据三视图概念即可解题.【详解】解:因为物体的左侧高,所以会将右侧图形完全遮挡,看不见的直线要用虚线代替,故选B.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.5、C【分析】利用平方差公式进行计算,即可得到答案.【详解】解:∵,,∴;故选择:C.【点睛】本题考查了二次根式的乘法运算,解题的关键是熟练运用平方差公式进行计算.6、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.7、D【分析】由题意可以判断△ADE为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB,AE=AD;
∵△ABC为直角三角形,
∴∠CAB=90°,△ADE为等腰直角三角形,
∴∠AED=45°,
故选:D.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.8、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷硬币问题,正、反面朝上的次数属于随机事件,不是确定事件,故A,C,D错误.
故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,
∴m=3,n=-5,
∴m+n=-2,
故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.10、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.二、填空题(每小题3分,共24分)11、【分析】直接利用特殊角的三角函数值进而得出答案.【详解】cos30°=.故答案为.【点睛】本题主要考查了特殊角的三角函数值,准确记忆特殊角的三角函数值是解题的关键.12、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
∴有1种可能使四边形ABCD为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.13、4【分析】将x=2代入方程计算即可求出a的值.【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:或,所以.故答案为.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15、130【分析】根据AB为直径,得到∠ACB=90°,进而求出∠ABC,再根据圆内接四边形性质即可求出∠D.【详解】解:∵AB为直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四边形ABCD是圆内接四边形,∴∠D=180°-∠ABC=130°.故答案为:130°【点睛】本题考查了“直径所对的角是圆周角”、“圆内接四边形对角互补”、“直角三角形两锐角互余”等定理,熟知相关定理,并能灵活运用是解题关键.16、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.17、2.5【分析】连接AC,根据∠ABC=90°可知AC是⊙O的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC的长,进而得出结论.【详解】解:如图,连接AC,∵∠ABC=90°,
∴AC是⊙O的直径,
∴∠D=90°,
∵AD=4,CD=3,
∴AC=5,∴⊙O的半径=2.5,故答案为:2.5.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.18、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三、解答题(共66分)19、较小相似多边形的周长为14cm,面积为36cm1.【分析】设较小相似多边形的周长为x,面积为y,则较大相似多边形的周长为56﹣x,面积18+y,根据相似多边形的性质得到,,然后利用比例的性质求解即可.【详解】解:设较小相似多边形的周长为x,面积为y,则较大相似多边形的周长为56﹣x,面积18+y,根据题意得,,解得x=14,y=36,所以较小相似多边形的周长为14cm,面积为36cm1.【点睛】本题考查了相似多边形的性质:对应角相等;对应边的比相等;两个相似多边形周长的比等于相似比;两个相似多边形面积的比等于相似比的平方.20、(1);(2).【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.考点:用列举法求概率.21、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;
(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.
(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC为y=kx+b,则,得k=﹣l,∴y=﹣x﹣1.对称轴为x=,当x=时,y=-()﹣1=,∴P(,).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.22、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.【详解】解:(1)设反比例函数为y=,∵反比例函数的图象过点A(2,3).则=3,解得m=1.故该反比例函数的解析式为y=;(2)设点P的坐标是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面积等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴点P的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键23、见解析【分析】主视图、左视图、俯视图是分别从几何体的正面、左面和上面所得到的图形,画图时要将几何体边缘和棱以及顶点都体现出来.【详解】解:如下图【点睛】本题考查的知识点是作简单几何体的三视图,掌握三视图的作法是解题的关键.24、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求,(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2【详解】解:(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2∴,故答案:(1)(2)AB+BC=2BE(3)【点睛】本题主要考查角平分线、三角形全等及三角形内心与外心的综合,难度较大,需灵活运用各知识求解.25、(1)见解析;(2)2π-3.【解析】(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AE•AD.(2)连结OA,由S阴影=S扇形AOB-S△AOB求出即可.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研讨课课件 节能减排努力建设生态文明
- 商场物业管理合同书范例
- 区块链技术引领医疗行业革新
- 从供应链到商业模式看区块链如何重塑经济格局
- 企业安全防线的筑建者-区块链技术探讨
- 肺癌免疫治疗临床试验
- 幼儿园生活老师上学期工作总结(3篇)
- 大学老师个人工作年终小结(21篇)
- 八年级思想品德工作总结汇编(7篇)
- 区块链在慈善募捐平台中的关键作用
- 分集水器选型计算
- GB/T 8314-2013茶游离氨基酸总量的测定
- GB/T 1410-2006固体绝缘材料体积电阻率和表面电阻率试验方法
- 工业厂房土方回填施工方案1215
- 鲜肉切片机设计说明书
- 2018年USB数据线检验规范资料
- 沥青混凝土拌合站吊装计算书
- 第4章单回路控制系统设计-zhm
- 视觉形象设计VIS清单
- LLC谐振半桥的主电路设计指导
- 工具钳工技能操作鉴定要素细目表09版
评论
0/150
提交评论