




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/20231SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/20232SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/20233SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/20234SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/20235SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/20236SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/20237SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/20238SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/20239SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202310SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202311SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202312SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202313SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202314SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202315SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202316SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202317SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202318SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202319SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202320SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202321SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202322SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfurthermodifications1/4/202323SIMCA-PGettingstarted.ppt5.Plotresults
Analysis/men6a.Outlierswereseeninthescoreplot
(welloutsidetheHotellingellipse)Startanotherworkset (eitherfromWorkset/Newasmodelxx,orusingthegraphicaltool-boxtoremoveoutliersfromthescoreplot)NotethatoutliersshouldNOTbedeletedfromthedatabyEdit/DatasetWhenthenewworksetisall-right,returnto“4.Analysis”tofitanewmodeltothenewworkset (fastbuttonorAnalysis/Autofit)1/4/202324SIMCA-PGettingstarted.ppt6a.Outlierswereseeninthe6b.Nooutlierswereseeninthescoreplots
(ortheyhavebeenexcluded,andthescoreplotsnowlookall-right)Now,interpretthemodelLookat“patterns”,trends,etc.,inthescoreplotsInspecttheloadingplotstointerprettheabovepatternsLookatDModXWhatdothesepatternssayabouttheobjectiveoftheinvestigation?1/4/202325SIMCA-PGettingstarted.ppt6b.NooutlierswereseenintAnalysisAdvisortounderstandandinterpretmodelresults1/4/202326SIMCA-PGettingstarted.pptAnalysisAdvisortounderstand7.Predictions
NewData,PredictionSetUnderPredictions,specifythesetofobservationsforwhichpredictionswillbemade,thepredictionsetNewdatacanbereadinasasecondarydataset (File/Import)andpredictionscanbemadeforthesePredictionset/ComplementWS,givesapredictionsetwiththoseobservationsthatwerenotinthetrainingsetPredictions/Y-predicted,T-predicted,etc.,calculatesanddisplaysthepredictedvaluesaccordingly1/4/202327SIMCA-PGettingstarted.ppt7.Predictions
NewData,Pred8.Generatethereport,withcustomizabletemplates1/4/202328SIMCA-PGettingstarted.ppt8.Generatethereport,withcUseoftheseslidesYoumayuseanyoralloftheseslidesinyourownpresentations,providedthatyoukeep(anddonotmodify)theUmetricslogoandwebreferenceIfyouhaveanyproblemswiththesoftware,orwithunderstandingofthematerial,pleasee-mailusat
info@1/4/202329SIMCA-PGettingstarted.pptUseoftheseslidesYoumayuseWhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods1/4/202330SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.1/4/202331SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.1/4/202332SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.1/4/202333SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.1/4/202334SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel1/4/202335SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis1/4/202336SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.1/4/202337SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON1/4/202338SIMCA-PGettingstarted.pptWorksetwizardonON12/18/20229Worksetwizard1/4/202339SIMCA-PGettingstarted.pptWorksetwizard12/18/202210SIMCAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox1/4/202340SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination1/4/202341SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel1/4/202342SIMCA-PGettingstarted.pptSelectionandFitofmodel12/1Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport1/4/202343SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport1/4/202344SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready1/4/202345SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard1/4/202346SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots1/4/202347SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo1/4/202348SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.1/4/202349SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced1/4/202350SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle1/4/202351SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版儿童游乐场设备安装与运营指导服务合同
- 2025版生态环境修复项目验收服务协议
- 环境监测智能化系统优化2025年数据质量控制与智能算法报告
- 城市地下综合管廊2025年社会稳定风险评估与风险评估指标体系构建报告
- 2025年休闲农业与乡村旅游乡村旅游产业文化与创意融合报告
- 工业机器人柔性制造系统2025年集成应用案例分析报告
- 数字孪生在城市智慧照明系统中的应用模式创新案例报告2025
- 工业废气深度净化技术2025年创新应用:钢铁行业深度治理报告
- 2025年母婴用品市场消费升级与品牌竞争下的婴幼儿护理用品市场分析报告
- 2025年电商平台数据分析与农村电商数据分析在农村电商数据分析应用案例研究中的应用报告
- 初级养老护理员用药照料
- 颤病护理课件
- 2025年公安局警务辅助人员招聘考试笔试试题(附答案)
- 2025年辅警职业心理测试题及答案
- 2025年国企应聘测试题及答案
- 信息通信网络施工员职业技能鉴定经典试题含答案
- 2023-2024学年安徽省合肥四十五中本部七年级(下)期末数学试卷
- 跨文化团队沟通与协作机制研究
- (高清版)DB13∕T 444-2000 鼠药及中毒样品中氟乙酰胺、毒鼠强的测定气相色谱法
- 第四届全国会计知识大赛模拟题库及答案
- DBJ-T 13-91-2025 福建省房屋市政工程安全风险分级管控与隐患排查治理标准
评论
0/150
提交评论