




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.2.在平面直角坐标系中,将抛物线向上平移1个单位后所得抛物线的解析式为()A. B. C. D.3.如果,那么的值等于()A. B. C. D.4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10355.如图,为的直径延长到点,过点作的切线,切点为,连接,为圆上一点,则的度数为()A. B. C. D.6.一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是()A.掷一次这枚骰子,向上一面的点数小于5B.掷一次这枚骰子,向上一面的点数等于5C.掷一次这枚骰子,向上一面的点数等于6D.掷一次这枚骰子,向上一面的点数大于67.如图,在△ABC中,∠A=45°,∠C=90°,点D在线段AC上,∠BDC=60°,AD=1,则BD等于()A. B.+1 C.-1 D.8.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是()A.一定相似 B.一定全等 C.不一定相似 D.无法判断9.已知⊙O的半径为13,弦AB//CD,AB=24,CD=10,则AB、CD之间的距离为A.17 B.7 C.12 D.7或1710.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.二、填空题(每小题3分,共24分)11.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.12.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.13.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).14.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.15.四边形ABCD是☉O的内接四边形,,则的度数为____________.16.方程(x﹣1)(x﹣3)=0的解为_____.17.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.18.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.三、解答题(共66分)19.(10分)如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,交于点.(1)求证:是的切线(2)若,求的长20.(6分)某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.21.(6分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元22.(8分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?23.(8分)解方程:(1);(2)24.(8分)解方程:(x+3)(x﹣6)=﹣1.25.(10分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?26.(10分)已知二次函数.(1)将二次函数化成的形式;(2)在平面直角坐标系中画出的图象;(3)结合函数图象,直接写出时x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、B【分析】根据抛物线的平移规律:括号里左加右减,括号外上加下减,即可得出结论.【详解】解:将抛物线向上平移1个单位后所得抛物线的解析式为故选B.【点睛】此题考查的是求抛物线平移后的解析式,掌握抛物线的平移规律:括号里左加右减,括号外上加下减,是解决此题的关键.3、D【分析】依据,即可得到a=b,进而得出的值.【详解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故选D.【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.4、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.5、A【分析】连接OC,根据切线的性质和直角三角形两锐角互余求出的度数,然后根据圆周角定理即可求出的度数.【详解】连接OC∵PC为的切线∴∵故选:A.【点睛】本题主要考查切线的性质,直角三角形两锐角互余和圆周角定理,掌握切线的性质,直角三角形两锐角互余和圆周角定理是解题的关键.6、D【分析】事先能肯定它一定不会发生的事件称为不可能事件,据此进行判断即可.【详解】解:A.掷一次这枚骰子,向上一面的点数小于5,属于随机事件,不合题意;B.掷一次这枚骰子,向上一面的点数等于5,属于随机事件,不合题意;C.掷一次这枚骰子,向上一面的点数等于6,属于随机事件,不合题意;D.掷一次这枚骰子,向上一面的点数大于6,属于不可能事件,符合题意;故选:D.【点睛】本题考查的知识点是不可能事件的定义,比较基础,易于掌握.7、B【分析】设BC=x,根据锐角三角函数分别用x表示出AC和CD,然后利用AC-CD=AD列方程即可求出BC,再根据锐角三角函数即可求出BD.【详解】解:设BC=x∵在△ABC中,∠A=45°,∠C=90°,∴AC=BC=x在Rt△BCD中,CD=∵AC-CD=AD,AD=1∴解得:即BC=在Rt△BCD中,BD=故选:B.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.8、A【分析】根据已知条件可得出,,再结合三角形的内角和定理可得出,从而可判定两三角形一定相似.【详解】解:由已知条件可得,,∵,∴,∵,∴,继而可得出,∴.故选:A.【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.9、D【解析】①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB与CD之间的距离为7cm或17cm.故选D.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.10、B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.二、填空题(每小题3分,共24分)11、【分析】设点A坐标为(x,y),由反比例函数的几何意义得,根据的面积为,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴,∴,∴,∵反比例函数经过第二、四象限,则,∴故答案为:.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.12、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.13、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).14、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.15、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.16、x1=3,x2=1【分析】利用因式分解法求解可得.【详解】解:∵(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得x1=3,x2=1,故答案为:x1=3,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,
∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,
在Rt△OAD中,OA=50,OD=50-x,AD=40,
∵OD2+AD2=OA2,
∴(50-x)2+402=502,解得x=1,
即水深CD约为为1.
故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.18、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共66分)19、(1)证明见解析;(2)1【分析】(1)根据等边三角形的性质可得∠OAC=30°,∠BCA=10°,根据平行线的性质得到∠EAC=10°,求出∠OAE=90°,可得AE是⊙O的切线;(2)先根据等边三角形性质得AB=AC,∠BAC=∠ABC=10°,由四点共圆得∠ADF=∠ABC=10°,得△ADF是等边三角形,然后证明△BAD≌△CAF,可得的长.【详解】证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=10°,∵AE∥BC,∴∠EAC=∠BCA=10°,∴∠OAE=∠OAC+∠EAC=30°+10°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=10°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=10°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=10°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF,∴BD=CF=1.【点睛】本题考查了三角形的外接圆,切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.20、(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元【分析】(1)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况列出一元二次方程确定售价即可;(2)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况设每天的毛利为w元,涨价和降价两种情况列出二次函数求出售价进行比较即可确定售价和最大毛利.【详解】解:(1)根据题意,得①设售价涨价x元,(20﹣15+x)(450﹣50x)=2400解得x1=1,x2=3,∵调整价格也兼顾顾客利益,∴x=1,则售价为21元;②设售价降价y元,(20﹣15﹣y)(450+150y)=2400解得y1=y2=1,则售价为19元;答:调整价格也兼顾顾客利益,售价应定为19元.(2)根据题意,得①设售价涨价x元时,每天的毛利为w1元,w1=(20﹣15+x)(450﹣50x)=﹣50x2+200x+2250=﹣50(x﹣2)2+1.当售价涨价2元,即售价为22元时,毛利最大,最大毛利为1元;②设售价降价y元时,每天的毛利为w2元,w2=(20﹣15﹣y)(450+150y)=﹣150y2+300y+2250=﹣150(y﹣1)2+2400当降价为1元时,即售价为19元时,毛利最大,最大毛利为2400元.综上所述,售价为22元时,毛利最大,最大毛利为1元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,解决本题的关键是找到题目中蕴含的等量关系,熟练掌握二次函数的性质,能够将一般式转化为顶点式.21、王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.22、(1);(2).【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可;(2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以(两个偶数);(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,(三个奇数).【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以迁为径以移为桥:语言迁移理论在高职英语语法教学中的应用探索
- 以趣启学:小学新手英语教师课堂游戏教学探索与实践
- 某生态黑猪养殖项目可行性报告
- 以诗意之笔绘思政新篇:高中思想政治课诗意化教学探索
- 以认知灵活理论为导向构建高中化学概念教学新策略
- 2025年中国环网真空开关柜行业市场发展前景及发展趋势与投资战略研究报告
- 给排水可行性研究报告
- 2024年中国亚磷酸二正丁酯行业市场调查报告
- 2025年中国袜机系统行业市场发展前景及发展趋势与投资战略研究报告
- 短视频内容创作与变现平台商业计划书
- 统编版语文五年级上册第二单元整体教学设计说课课件
- AI技术优化银行资金流动性管理的探索
- 2025年广东省高考物理试题(含答案解析)
- 拖车服务合同协议书模板
- 智能手机组装工艺流程
- 肝胆外科医学科普
- 妻子婚内忠诚协议书
- 2025-2030年全球与中国心理测验行业市场发展分析及发展机遇和风险研究报告
- 能源转型与碳市场机制协同的路径优化研究
- 银行业反洗钱培训课件
- 医美行业营销策划方案模板
评论
0/150
提交评论