广西博白县2022年八年级数学第一学期期末复习检测模拟试题含解析_第1页
广西博白县2022年八年级数学第一学期期末复习检测模拟试题含解析_第2页
广西博白县2022年八年级数学第一学期期末复习检测模拟试题含解析_第3页
广西博白县2022年八年级数学第一学期期末复习检测模拟试题含解析_第4页
广西博白县2022年八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个 B.7个 C.6个 D.5个2.已知关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3 B.m<4 C.m≤4且m≠3 D.m>5且m≠63.已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或44.如图,直线,∠1的度数比∠2的度数大56°,若设,,则可得到的方程组为()A. B. C. D.5.实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<–a<b C.1<|a|<b D.–b<a<–16.如图,在第一个中,,,在上取一点,延长到,使得,得到第二个;在上取一点,延长到,使得;…,按此做法进行下去,则第5个三角形中,以点为顶点的等腰三角形的顶角的度数为()A. B. C. D.7.如果等腰三角形的一个角是80°,那么它的底角是A.80°或50°B.50°或20°C.80°或20°D.50°8.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.929.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个10.甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为_____.12.如图,点在同一直线上,平分,,若,则__________(用关于的代数式表示).13.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.14.如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_________15.春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A礼盒,10个B礼盒,10个C礼盒;乙套餐每袋装有5个A礼盒,7个B礼盒,6个C礼盒;丙套餐每袋装有7个A礼盒,8个B礼盒,9个C礼盒;丁套餐每袋装有3个A礼盒,4个B礼盒,4个C礼盒,若一个甲套餐售价1800元,利润率为,一个乙和一个丙套餐一共成本和为1830元,且一个A礼盒的利润率为,问一个丁套餐的利润率为______利润率16.将0.0021用科学记数法表示为___________.17.点A(2,-3)关于x轴对称的点的坐标是______.18.二次根式中,x的取值范围是.三、解答题(共66分)19.(10分)如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.20.(6分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.21.(6分)已知:如图,点是的中点,于,于,,求证:.22.(8分)如图,三个顶点的坐标分别为,,.(1)若与关于轴成轴对称,画出的位置,三个顶点坐标分别为_______,_________,__________;(2)在轴上是否存在点,使得,如果存在,求出点的坐标,如果不存在,说明理由.23.(8分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793859189乙8996809133.5(1)请计算甲的四项成绩的方差和乙的平均成绩;(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按计算,哪个学生数学综合素质测试成绩更好?请说明理由.24.(8分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.25.(10分)在四边形中,,,是对角线,于点,于点(1)如图1,求证:(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于四边形面积的.26.(10分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整,收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(1)整理描述数据:按如下分数段整理、描述这两组样本数据:成绩x人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m=________;n=________.(2)分析数据:①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班75x75乙班7270y在表中:x=________,y=________.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________

人.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先以三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则BCM、BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.2、A【解析】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=1-m.

∵x为正数,

∴1-m>0,解得m<1.

∵x≠1,

∴1-m≠1,即m≠2.

∴m的取值范围是m<1且m≠2.

故选A.3、A【解析】试题分析:解方程组得:所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.4、B【解析】根据∠1与∠2互补,且∠1的度数比∠2的度数大56°列方程组即可.【详解】∵,∴∠1+∠2=180°,即x+y=180.∵∠1的度数比∠2的度数大56°,∴∠1=∠2+56°,即x=y+56°.∴.故选B.【点睛】本题考查了平行线的性质,二元一次方程组的应用,找出列方程组所需的等量关系是解答本题的关键.5、A【解析】试题分析:由图可知:故A项错误,C项正确;故B、D项正确.故选A.考点:1、有理数大小比较;2、数轴.6、A【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A5的度数.【详解】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠An=,以点A4为顶点的等腰三角形的底角为∠A5,则∠A5==5°,∴以点A4为顶点的等腰三角形的顶角的度数为180°-5°-5°=170°.故选:A.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.7、A【解析】根据题意,分已知角是底角与不是底角两种情况讨论,结合三角形内角和等于180°,分析可得答案.【详解】根据题意,一个等腰三角形的一个角等于80°,

①当这个角是底角时,即该等腰三角形的底角的度数是80°,

②当这个角80°是顶角,

设等腰三角形的底角是x°,

则2x+80°=180°,

解可得,x=50°,

即该等腰三角形的底角的度数是50°;

故选:A.【点睛】考查了等腰三角形的性质,及三角形内角和定理;通过三角形内角和,列出方程求解是正确解答本题的关键.8、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.9、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【点睛】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.10、B【分析】①甲的速度为1203=40,即可求解;

②t≤1时,乙的速度为501=50,t>1后,乙的速度为(120-50)(3-1)=35,即可求解;

③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;

④甲的函数表达式为:,乙的函数表达式为:时,,时,,即可求解.【详解】①甲的速度为1203=40(千米/小时),故正确;

②时,乙的速度为501=50(千米/小时),后,乙的速度为(120-50)(3-1)=35(千米/小时),故错误;

③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;

④由①②③得:甲的函数表达式为:,

乙的函数表达式为:当时,,当时,,当时,,解得(小时);当时,,解得(小时);当时,,解得(小时);∴甲、乙两名运动员相距5千米时,或或小时,故错误;

综上,①③正确,共2个,故选:B.【点睛】本题为一次函数应用题,考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:根据速度=路程÷时间求出速度;待定系数法求函数解析式;找出各线段所对应的函数表达式做差解方程.二、填空题(每小题3分,共24分)11、1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.12、(90-α)【解析】根据∠,可以得到∠EBD,再根据BF平分∠EBD,CG∥BF,即可得到∠GCD,本题得以解决.【详解】∵∠EBA=,∠EBA+∠EBD=180,

∴∠EBD,

∵BF平分∠EBD,

∴∠FBD=∠EBD=(180)=90,

∵CG∥BF,

∴∠FBD=∠GCD,

∴∠GCD=90=,

故答案为:(90-).【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.13、1【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.14、【分析】由图可知,正方形的边长是1,所以对角线的长为,所以点A表示的数为2减去圆的半径即可求得.【详解】由题意可知,正方形对角线长为,所以半圆的半径为,则点A表示的数为.故答案为.【点睛】本题主要考查了数轴的基本概念,圆的基本概念以及正方形的性质,根据题意求出边长是解题的关键.15、【分析】先由甲套餐售价1800元,利润率为,可求出甲套餐的成本之和为1500元设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,则由题意得,可同时消去y和z,得到,再根据一个A礼盒的利润率为,可求出一个A礼盒的售价为50元,进而可得出一个B礼盒与一个C礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.【详解】设甲套餐的成本之和m元,则由题意得,解得元.设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,由题意得,同时消去字母y和z,可得所以A礼盒的利润率为,可得其利润元,因此一个A礼盒的售价元.设一个B礼盒的售价为a元,一个C礼盒的售价为b元,则可得,整理得元所以一个丁套餐的售价元一个丁套餐的成本元因此一个丁套餐的利润率故答案为【点睛】本题考查了方程组的应用以及有理数的混合运算,根据运算规律,找出关于x的方程组是解题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】,故答案为:.【点睛】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.17、(2,3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题(共66分)19、80°.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△DAF得出∠ADF=∠CBG,继而由三角形外角性质可得答案.【详解】∵四边形ABCD是平行四边形,∠C=50,∴∠A=∠C=50,∠ABC=180﹣∠C=130,AD=BC.∵∠E=30,∴∠ABE=180﹣∠A﹣∠E=100,∴∠CBG=30,在△BCG和△DAF中,∵,∴△BCG≌△DAF(SAS),∴∠CBG=∠ADF=30,则∠BFD=∠A+∠ADF=80.【点睛】此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质及全等三角形的判定与性质.20、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,

∴∠AED=90°=∠ACB,

又∵AD平分∠BAC,

∴∠DAE=∠DAC,

∵AD=AD,

∴△AED≌△ACD,

∴AE=AC,

∵AD平分∠BAC,

∴AD⊥CE,

即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.21、详见解析【分析】根据AAS证明,再根据全等三角形的性质得到BE=DC.【详解】∵是的中点,∴,∵,∴,在和中∴(AAS),∴.【点睛】考查了全等三角形的判定及性质,注意掌握①判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL;②全等三角形的对应边对应角分别相等.22、(1)(-1,1),(-4,2),(-3,4);(2)存在,Q(0,)或(0,-)【分析】(1)作出A、B、C关于y轴的对称点A1、B1、C1即可得到坐标,依次连接A1、B1、C1即可;(2)存在.设Q(0,m),构建方程即可解决问题.【详解】解:(1)△A1B1C1如图所示,A1(-1,1),B1(-4,2),C1(-3,4);

故答案为:(-1,1),(-4,2),(-3,4);

(3)存在.设Q(0,m),

∵S△ACQ=S△ABC,

∴|m|×3-|m|×1=(9-×2×3-×1×3-×1×2),

解得|m|=,

∴m=±,

∴Q(0,)或(0,-).【点睛】本题考查坐标与图形变化-轴对称、三角形的面积等知识,熟练掌握相关知识是解题的关键.23、(1)10,89;(2)乙,见解析【分析】(1)根据平均数和方差(2)根据加权平均数的概念计算.【详解】解:(1)乙平均数=(2)甲的分数=乙的分数=故乙的成绩更好.【点睛】此题考查了平均数和加权平均数,用到的知识点是平均数和加权平均数,掌握它们的计算公式是本题的关键.24、(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【解析】(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.【详解】解:(1)∵y1=x+3,∴当y1=0时,x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组,得,则点C坐标为(﹣1,);(3)如果y1>y1,那么x的取值范围是x<﹣1.故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【点睛】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.25、(1)详见解析;(2).【分析】(1)根据平行线的性质可得,然后根据AAS即可证得结论;(2)由已知条件、直角三角形的性质和平行线的性质可依次得出∠BAE=30°,∠ABE=60°,∠ADB=30°,然后利用30°角的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论