版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,四个一次函数,,,的图象如图所示,则,,,的大小关系是()A. B. C. D.2.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是()A.30° B.45° C.60° D.90°3.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A. B.C. D.4.的平方根是()A.±5 B.5 C.± D.5.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角6.如图,AB∥CD,∠A+∠E=75º,则∠C为()A.60º B.65º C.75º D.80º7.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.108.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.59.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣310.如图,已知,则一定是的()A.角平分线 B.高线 C.中线 D.无法确定11.下列各式中,正确的是()A.3>2 B.a3•a2=a6 C.(b+2a)(2a-b)=b2-4a2 D.5m+2m=7m212.已知是完全平方式,则的值是()A.5 B. C. D.二、填空题(每题4分,共24分)13.若关于的方程的解不小于,则的取值范围是_______.14.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为________.15.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.16.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.17.如图,延长矩形的边至点,使.连接,如果,则等于________度.18.函数中,自变量的取值范围是.三、解答题(共78分)19.(8分)先化简,再求值:,其中且为整数.请你从中选取一个喜欢的数代入求值.20.(8分)如图,在△ABC中,BE、CD相交于点E,设∠A=2∠ACD=76°,∠2=143°,求∠1和∠DBE的度数.21.(8分)已知,,求下列代数式的值:(1);(2).22.(10分)计算:(1)(2)化简:(3)化简:(4)因式分解:23.(10分)已知,为直线上一点,为直线外一点,连结.(1)用直尺、圆规在直线上作点,使为等腰三角形(作出所有符合条件的点,保留痕迹).(2)设,若(1)中符合条件的点只有两点,直接写出的值.24.(10分)小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?25.(12分)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(𝑎𝑚+𝑎𝑛)+(𝑏𝑚+𝑏𝑛)=a(𝑚+𝑛)+b(𝑚+𝑛)=(𝑎+𝑏)(𝑚+𝑛),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2-y2+x-y(2)已知四个实数a、b、c、d同时满足a2+ac=12k,b2+bc=12k.c2+ac=24k,d2+ad=24k,且a≠b,c≠d,k≠0①求a+b+c的值;②请用含a的代数式分别表示b、c、d26.按下列要求解题(1)计算:(2)化简:(3)计算:
参考答案一、选择题(每题4分,共48分)1、B【分析】根据一次函数和正比例函数的图象与性质可得.【详解】解:∵,经过第一、三象限,且更靠近y轴,∴,由∵,从左往右呈下降趋势,∴,又∵更靠近y轴,∴,∴故答案为:B.【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.2、C【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【详解】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.3、A【解析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4、C【解析】先求出=5,再根据平方根定义求出即可.【详解】∵=5,5的平方根是±∴的平方根是±,故选C.【点睛】本题考查了对平方根和算术平方根的应用,主要考查学生对平方根和算术平方根的定义的理解能力和计算能力,难度不大.5、D【解析】试题分析:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.考点:轴对称-最短路线问题.6、C【解析】如图,∵∠A+∠E=75º,∴根据三角形内角和等于1800,得∠AFE=105º.∵∠AFE与∠BFC是对顶角,∴∠AFE=∠BFC=105º.∵AB∥CD,∴根据平行线的同旁内角互补的性质,得∠C=1800-∠BFC=75º.故选C.7、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.8、C【解析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.【详解】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,根据方差公式:=3,则==4×=4×3=12,故选C.【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.9、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<1.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、C【分析】根据三角形中线的定义可知.【详解】因为,所以一定是的中线.【点睛】本题考查三角形的中线,掌握三角形中线的定义是解题的关键.11、A【分析】比较两个二次根式的大小可判别A,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B、C、D的正误.【详解】A、,,∵,∴,故该选项正确;B、•,故该选项错误;C、,故该选项错误;D、,故该选项错误;故选:A.【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.12、D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项确定m的值.【详解】解:∵∴my=±2•y•5,∴m=±10,故选:D.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.二、填空题(每题4分,共24分)13、m≥-8且m≠-6【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+9≥1且m+9≠3解得m≥-8且m≠-6.故答案为:m≥-8且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.14、13【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【详解】设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即:a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,2ab=12,∴a2+b2=13,故答案为:13.【点睛】本题主要考查几何图形的面积关系与整式的运算,掌握整式的加减乘除混合运算法则以及完全平方公式,是解题的关键.15、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).16、1【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=1.故答案为:1.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.17、1【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【详解】如图,连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=1°,故答案为:1.【点睛】本题考查矩形的性质,解题的关键是熟知矩形的对角线相等,再根据推导出角相等.18、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-1≥0,
解得:x≥1.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.三、解答题(共78分)19、;当时,原式【分析】根据分式的加法和除法可以化简题目中的式子,然后从且为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:,∵且为整数,
∴当m=0时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20、∠1=114°;∠DBE=29°【解析】试题分析:求出∠ACD,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠ACD计算即可得解;再根据三角形的一个外角等于与它不相邻的两个内角的和列式求解即可得到∠DBE.解:∵2∠ACD=76°,∴∠ACD=38°,在△ACD中,∠1=∠A+∠CD=76°+38°=114°;在△BDE中,∠DBE=∠2﹣∠1=143°﹣114°=29°.21、(1);(2)或.【分析】(1)把两边平方,展开,即可求出的值;(2)先求出的值,再开方求得的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵,,
∴,
∴,
∴,
∴;(2)∵,,∴故答案为:或.【点睛】本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.22、(1)3x;(2);(3)(4).【分析】(1)根据分式乘法法则计算即可;
(2)根据平方差公式展开,合并同类项即可;(3)根据完全平方公式和单项式乘多项式展开,合并同类项即可;(4)提公因式后,再利用平方差公式继续分解即可.【详解】(1);(2);(3);(4).【点睛】本题考查了分式的乘法,整式的混合运算,因式分解,熟记完全平方公式、平方差公式并灵活运用是解题的关键.23、(1)图见解析;(2)n的值为1.【分析】(1)分和AB与MN不垂直两种情况,①当时,以点A为圆心,AB为半径画弧,交MN于两点,则是符合条件的点;②当AB与MN不垂直时,分别以A为圆心,AB为半径画弧,交MN于两点,再以B为圆心,BA为半径画弧,交MN于点,则是符合条件的点;(2)由(1)即可知,此时有,据此即可得出答案.【详解】(1)依题意,分以下2种情况:①当时,以点A为圆心,AB为半径画弧,交MN于两点,则是符合条件的点,作图结果如图1所示;②当AB与MN不垂直时,分别以A为圆心,AB为半径画弧,交MN于两点,再以B为圆心,BA为半径画弧,交MN于点,则是符合条件的点,作图结果如图2所示;(2)由题(1)可知,此时有则故此时n的值为1.【点睛】本题考查了圆的尺规作图、直尺画线段、等腰三角形的性质等知识点,易出错的是题(1),理解题意,分两种情况讨论是解题关键,勿受题中示意图的影响,出现漏解.24、小明元旦前在该超市买了6本练习本.【解析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据题意得:15x解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镇2025年柠檬黄脉病综合防控专项行动方案安岳柠檬黄脉病补贴
- 防汛物资仓库可行性研究报告
- 青海婴儿车生产建设项目可行性研究报告
- 高标准农田建设项目实施方案、可研报告编制技术方案
- 高速公路工程可行性研究报告(投资估算及资金筹措)
- 黄冈建筑垃圾循环再利用建设项目可行性研究报告
- 第十届安徽省全屋智能设计集成职业技能竞赛(制冷空调系统安装维修工)备赛试题库(含答案)
- 产品专员工作汇报
- 2025年护师类之儿科护理主管护师真题练习试卷A卷附答案
- 2025年证券从业之证券市场基本法律法规押题练习试题A卷含答案
- 弘扬教育家精神 争做四有好老师
- 三标合一管理体系培训
- 2025年吉林省国资委监管企业招聘(2号)笔试考点题库试题(含答案)
- 中国少数民族节日课件
- 农信社法规培训课件
- DB31∕T 1545-2025 卫生健康数据分类分级要求
- 呼吸科科室管理制度
- 小学英语职业课件模板
- 2025年基于核心素养的小学数学综合实践教学设计研究
- 2025至2030年中国羟基蛋氨酸钙盐行业市场深度评估及投资发展潜力报告
- 基于积极心理学的初中学困生心理干预机制研究
评论
0/150
提交评论