江西省吉安市名校2022年数学八上期末达标检测试题含解析_第1页
江西省吉安市名校2022年数学八上期末达标检测试题含解析_第2页
江西省吉安市名校2022年数学八上期末达标检测试题含解析_第3页
江西省吉安市名校2022年数学八上期末达标检测试题含解析_第4页
江西省吉安市名校2022年数学八上期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,△ABC中,∠A=40°,AB=AC,D、E、F分别是AB、BC、AC边上的点,且BD=CE,BE=CF,则∠DEF的度数是()A.75° B.70° C.65° D.60°2.下列图形中,对称轴条数最多的图形是()A. B. C. D.3.在平面直角坐标系中,已知点P的坐标为(3,4),点P与点Q关于y轴对称,则Q点的坐标是()A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)4.不等式组12x≤1A. B. C. D.5.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米6.下列各组数据中,不能作为直角三角形三边长的是()A.9,12,15 B.3,4,5 C.1,2,3 D.40,41,97.如图,中,垂直平分交于点,交于点.已知的周长为的周长为,则的长()A. B. C. D.8.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.① B.② C.③ D.④9.以下轴对称图形中,对称轴条数最少的是()A. B.C. D.10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知直角三角形的两条直角边分别为5和12,则其斜边上的中线长为_____.12.已知是整数,则正整数n的最小值为___13.如图,一次函数和交于点,则的解集为___.14.因式分解:________;________.15.分解因式-2a2+8ab-8b2=______________.16.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.17.分解因式:2a3﹣8a=________.18.如图,若∠1=∠D=39°,∠C=51°,则∠B=___________°;三、解答题(共66分)19.(10分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来;(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.

20.(6分)每到春夏交替时节,雄性杨树会以漫天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民公有__________人;(2)请补全条形统计图;(3)扇形统计图中请求出扇形的圆心角度数.21.(6分)如图,中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒()(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求的值;(3)当为何值时,为等腰三角形22.(8分)某校庆为祝建国70周年举行“爱国读书日”活动,计划用500元购买某种爱国主义读书,现书店打八折,用500元购买的爱国主义读本比原计划多了5本,求该爱国主义读本原价多少元?23.(8分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.24.(8分)如图①,在中,和的平分线交于点过点作交于交于(1)求证:是等腰三角形.(2)如图①,猜想:线段与线段之间有怎样的数量关系?并说明理由.(3)如图②,若中的平分线与三角形外角的平分线交于,过点作交于点交于点这时图中线段与线段之间的数量关系又如何?直接写出答案,不说明理由.25.(10分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.26.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.

参考答案一、选择题(每小题3分,共30分)1、B【分析】由等腰三角形的性质得出∠B=∠C=70°,再证明△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.【详解】解:∵AB=AC,

∴∠B=∠C=(180°-∠A)=70°,

在△BDE和△CEF中,,

∴△BDE≌△CEF(SAS),

∴∠BDE=∠CEF,

∵∠CED=∠B+∠BDE,

即∠CEF+∠DEF=∠B+∠BDE,

∴∠DEF=∠B=70°;

故选:B.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及三角形的外角性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应角相等是解决问题的关键.2、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.3、B【解析】根据轴对称---平面直角坐标系中关于y轴对称的点的特点:纵坐标不变,横坐标变为相反数,可知Q点的坐标为(-3,4).故选B.点睛:此题主要考查了轴对称---平面直角坐标系,解题关键是明确坐标系中的轴对称特点是:关于哪个轴对称时,那个坐标不变,另一个变为相反数,直接可求解,比较简单.4、C【分析】先求出两个不等式的解集,再求其公共解.【详解】解:由12x≤2得:x≤2.由2-x<3得:x>-2.所以不等式组的解集为-2<x≤2故选C.【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.6、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、92+122=152,故是直角三角形,不符合题意;B、32+42=52,故是直角三角形,不符合题意;C、12+22≠32,故不是直角三角形,符合题意;D、92+402=412,故是直角三角形,不符合题意.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、A【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵的周长为的周长为∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.8、C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.9、D【解析】根据轴对称图形的概念对各选项分析判断即可解答.【详解】选项A有四条对称轴;选项B有六条对称轴;选项C有四条对称轴;选项D有二条对称轴.综上所述,对称轴最少的是D选项.故选D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.【点睛】此题考查函数的图象,解题关键在于观察图形二、填空题(每小题3分,共24分)11、6.1.【分析】利用勾股定理求出斜边,再利用直角三角形中,斜边上的中线等于斜边的一半,便可得到答案.【详解】解:斜边长为:故斜边上的中线为斜边的一半,故为6.1故答案为:6.1【点睛】本题考查勾股定理应用,以及直角三角形斜边上的中线为斜边的一半,掌握这两个知识点是解题的关键.12、1【分析】因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,

∴是整数,即1n是完全平方数;

∴n的最小正整数值为1.

故答案为1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.13、【分析】找出的图象在的图象上方时对应的x的取值范围即可.【详解】解:由函数图象可得:的解集为:,故答案为:.【点睛】本题考查了利用函数图象求不等式解集,熟练掌握数形结合的数学思想是解题关键.14、【分析】原式提取,再利用平方差公式分解即可;首先提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:故答案为:;.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.15、-2(a-2b)2【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)216、【解析】试题解析:∵四边形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.17、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.18、129°【解析】∵∠1=∠D=39°,∴AB∥CD.∵∠C=51°,∴∠B=180°-51°=129°.三、解答题(共66分)19、(1)a2+b2+c2+2ab+2bc+2ac;(2)20【解析】试题分析:(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,另一种是大正方形的面积,可得等式;(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.试题解析:(1);(2)考点:因式分解的应用20、(1)2000;(2)详见解析;(3)1.8°【分析】(1)根据扇形统计图和条形统计图,利用A类的数据求出总调查人数;(2)调查的总人数乘以D所占的比例,即可求出D的人数,从而补全条形统计图;(3)先求出E所占的百分比,利用圆心角公式求解即可.【详解】(1)根据扇形统计图和条形统计图可知,选A的有300人,占总人数的15%(人)本次接受调查的市民公有2000人(2)D对应人数为:2000×25%=500补全条形统计图如下图所示(3)扇形E所在的百分比为:1-15%-12%-40%-25%=8%∴扇形E的圆心角度数为【点睛】本题考查了统计的问题,掌握扇形图和条形图的性质、圆心角的公式是解题的关键.21、(1);(2);(3)或或5或【分析】(1)设AP=x,利用勾股定理的方程思想求x,再去求AP长,除以速度得时间t;(2)根据角平分线的性质,设CP=x,继续利用勾股定理法方程思想求x,再算出P的路径长,除以速度得时间t;(3)利用“两圆一线”的方法先画图,找到所有符合条件的P点,再分类讨论,根据等腰三角形的性质求P的路径长,再算时间.【详解】(1)根据勾股定理,,如图,当P在线段AC上,且AP=BP,设AP=BP=x,则,在中,,得,解得,,;(2)如图,AP是的角平分线,过点P作于点Q,由角平分线的性质得到CP=QP,在和中,,∴,∴AC=AQ,设,,,在中,,得,解得,,;(3)需要分情况讨论,如图,一共有三种情况,四个点,①BC=PC,、P在AC上,PC=BC=3,AP=4-3=1,;、如图,P在AB上,PC=BC=3,作于点D,由等积法,,再根据勾股定理,,由等腰三角形“三线合一”,,,;②BC=CP,P在AB上,BC=CP=3,AC+BC+BP=10,;③PB=PC,如图,P在AB上,过点P作于点P,由等腰三角形“三线合一”,E是BC中点,∵,,∴,由中位线定理,P是AB中点,∴,,,综上,当t为或或或时,是等腰三角形.【点睛】本题考查几何图形中的动点问题,涉及勾股定理、角平分线的性质和等腰三角形的性质,解题的关键是按照题目要求求出对应的P点位置,从而得到P的运动路径长,再去除以速度得到时间.22、25元.【分析】设爱国主义读本原价x元,根据题意列出方程即可求出答案.【详解】设爱国主义读本原价x元,,解得:x=25,经检验,x=25是分式方程的解,答:爱国主义读本原价25元【点睛】此题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.23、(1)见解析;(2)见解析【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,∴AD=AM.【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.24、(1)详见解析;(2)详见解析;(3)【分析】(1)根据角平分线的定义可得,然后根据平行线的性质可得,从而得出根据等角对等边即可证出结论;(2)根据角平分线的定义可得,然后根据平行线的性质可得,从而得出根据等角对等边可得;同理证出从而证出结论;(3)根据角平分线的定义可得,然后根据平行线的性质可得,从而得出根据等角对等边可得;同理证出从而证出结论.【详解】(1)求证:平分是等腰三角形(2)猜想:理由如下:平分同理可得.(3),理由如下平分同理可得.【点睛】此题考查的是角平分线的定义、平行线的性质和等腰三角形的判定,掌握角平分线的定义、平行线的性质和等腰三角形的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论