内蒙古乌兰察布市集宁七中学2022-2023学年数学八上期末质量跟踪监视模拟试题含解析_第1页
内蒙古乌兰察布市集宁七中学2022-2023学年数学八上期末质量跟踪监视模拟试题含解析_第2页
内蒙古乌兰察布市集宁七中学2022-2023学年数学八上期末质量跟踪监视模拟试题含解析_第3页
内蒙古乌兰察布市集宁七中学2022-2023学年数学八上期末质量跟踪监视模拟试题含解析_第4页
内蒙古乌兰察布市集宁七中学2022-2023学年数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.用科学记数法表示为()A. B. C. D.2.计算:等于()A.3 B.-3 C.±3 D.813.若分式的值等于0,则的值为()A. B. C. D.4.下列各组数中,是方程2x-y=8的解的是()A. B. C. D.5.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是()A.30°; B.40°; C.50°; D.60°.6.下列大学校徽主体图案中,是轴对称图形的是()A. B. C. D.7.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.8.下列四个图案中,不是轴对称图形的是()A. B. C. D.9.已知,则()A.4033 B.4035 C.4037 D.403910.下列图形中,具有稳定性的是()A.正方形 B.长方形 C.三角形 D.平行四边形11.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟12.如图,已知,,则()A.75° B.70° C.65° D.60°二、填空题(每题4分,共24分)13.若有意义,则的取值范围是__________.14.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.15.因式分解:(a+b)2﹣64=_____.16.计算的结果等于_______.17.在平面直角坐标系中,点关于轴对称的点的坐标为______.18.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.三、解答题(共78分)19.(8分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中,,,,、、在同一条直线上,连结.(1)请在图2中找出与全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.20.(8分)如图,在中,,是高线,,,(1)用直尺与圆规作三角形内角的平分线(不写作法,保留作图痕迹).(2)在(1)的前提下,判断①,②中哪一个正确?并说明理由.21.(8分)如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.22.(10分)在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是.(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.23.(10分)解不等式(组)(1);(2)24.(10分)如图,在中,,点分别在上,,与相交于点.(1)求证:.(2)若,则求长.25.(12分)解方程:26.如图,为的中点,,,求证:.

参考答案一、选择题(每题4分,共48分)1、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000000052=.

故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【分析】=3,9的算术平方根等于3,需注意的是算术平方根必为非负数,即可得出结果.【详解】=3故选:A【点睛】本题主要考查了算术平方根的定义,一个正数只有一个算术平方根,1的算术平方根是1.3、B【分析】化简分式即可求解,注意分母不为0.【详解】解:===0∴x=2,经检验:x+2≠0,x=2是原方程的解.故选B.【点睛】本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.4、C【分析】把各项中x与y的值代入方程检验即可.【详解】解:A、把代入方程左边得:2+2=4,右边=8,左边≠右边,故不是方程的解;

B、把代入方程左边得:4-0=4,右边=8,左边≠右边,故不是方程的解;

C、把代入方程左边得:1+7=8,右边=8,左边=右边,是方程的解;

D、把代入方程左边得:10+2=12,右边=8,左边≠右边,故不是方程的解,

故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、C【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.6、C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.7、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.8、D【解析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.是轴对称图形,故该选项不符合题意,B.是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项不符合题意,D.不是轴对称图形,故该选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、C【分析】根据得出a的值,再对2a+3进行运算化简即可.【详解】解:∵∴∴∴故答案为:C.【点睛】本题考查了代数式的运算,解题的关键是对2a+3进行化简.10、C【分析】根据三角形具有稳定性解答.【详解】解:三角形,正方形,平行四边形,长方形中只有三角形具有稳定性.

故选C.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.11、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.12、B【分析】根据三角形外角的性质可得∠A=142°-72°,计算即可.【详解】解:由三角形外角的性质可得∠A+72°=142°,∴∠A=142°-72°=70°,故选:B.【点睛】本题考查三角形外角的性质,三角形外角等于与它不相邻的两个内角的和.二、填空题(每题4分,共24分)13、一切实数【分析】根据使立方根有意义的条件解答即可.【详解】解:立方根的被开方数可以取一切实数,所以可以取一切实数.故答案为:一切实数.【点睛】本题考查使立方根有意义的条件,理解掌握该知识点是解答关键.14、(2,).【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×=2,点C到AB的距离为=,∴C(2,+1),把等边△ABC先沿y轴翻折,得C’(-2,+1),再向下平移1个单位得C’’(-2,)故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,纵坐标为+1﹣2020=﹣2019,所以,点C的对应点C'的坐标是(2,﹣2019).故答案为:(2,﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.15、(a+b﹣8)(a+b+8)【分析】直接利用平方差公式分解因式得出答案.【详解】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).故答案为(a+b﹣8)(a+b+8).【点睛】此题主要考查了平方差公式分解因式,正确应用公式是解题关键.16、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算17、【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(﹣8,7)关于x轴对称的点的坐标为(﹣8,﹣7),故答案为:(﹣8,﹣7).【点睛】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.18、115cm1.【解析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图所示,作等腰三角形腰上的高CD,∵∠B=∠ACB=15°,

∴∠CAD=30°,

∴CD=AC=×30=15cm,

∴此等腰三角形的面积=×30×15=115cm1,

故答案为:115cm1.【点睛】本题考查的是含30度角的直角三角形的性质、等腰三角形的性质以及三角形外角的性质,熟练运用相关性质定理是解题的关键.三、解答题(共78分)19、(1)与全等的三角形为△ACD,理由见解析;(2)见解析【分析】(1)根据等式的基本性质可得∠BAE=∠CAD,然后利用SAS即可证出≌△ACD;(2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与全等的三角形为△ACD,理由如下∵∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD在和△ACD中∴≌△ACD(2)∵≌△ACD,∴∠ABE=∠ACD=45°∴∠DCB=∠ACD+∠ACB=90°∴【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.20、(1)见解析;(2)②对,证明见解析.【分析】(1)以点A为圆心,任意长为半径画弧,分别与AB,AC相交于一点,然后以这两点为圆心,大于这两点距离的一半画弧,两弧交于一点,连接交点与A的直线,与BC相交于点E,则AE为的平分线;(2)由三角形内角和定理和角平分线定理,得到,由余角性质得到∠CAD=,即可求出.【详解】解:(1)如图所示,AE为所求;(2)②正确;理由如下:∵,,∴∠BAC=,∵AE平分,∴∠CAE=,∵AD是高,∴∠ADC=90°,∴∠CAD=,∴,∴;【点睛】本题考查了角平分线性质,画角平分线,以及三角形的内角和定理,解题的关键是掌握角平分线的性质和三角形的内角和定理,正确求出.21、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【点睛】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应.22、(1)1<AD<7;(2)①2<EF<6;②CE⊥ED,理由见解析【分析】(1)在△ABE中,根据三角形的三边关系定理即可得出结果;(2)①延长ED到点N,使,连接CN、FN,由SAS证得,得出,由等腰三角形的性质得出,在△CFN中,根据三角形的三边关系定理即可得出结果;②延长CE与DA的延长线交于点G,易证DG∥BC,得出,由ASA证得,得出,即可证得,由,根据等腰三角形的性质可得出.【详解】(1)在△ABE中,由三角形的三边关系定理得:,即,即故答案为:;(2)①如图②,延长ED到点N,使,连接CN、FN∵点D是BC边上的中点在△NDC和△EDB中,是等腰三角形,在△CFN中,由三角形的三边关系定理得:,即;②;理由如下:如图③,延长CE与DA的延长线交于点G∵点E是AB中点在△GAE和△CBE中,,即.(等腰三角形的三线合一)【点睛】本题考查了三角形全等的判定定理与性质、三角形的三边关系定理、等腰三角形的判定与性质等知识点,较难

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论