




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.小明沿着坡度为的山坡向上走了,则他升高了()A. B. C. D.2.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为()A.2 B.3 C.4 D.63.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.4.在平面直角坐标中,把△ABC以原点O为位似中心放大,得到△A'B'C',若点A和它对应点A'的坐标分别为(2,5),(-6,-15),则△A'B'C'与△ABC的相似比为()A.-3 B.3 C. D.5.下列图形中,可以看作是中心对称图形的为()A. B. C. D.6.二次函数图象如图所示,下列结论:①;②;③;④;⑤有两个相等的实数根,其中正确的有()A.1个 B.2个 C.3个 D.4个7.若正六边形的边长为6,则其外接圆半径为()A.3 B.3 C.3 D.68.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为()A.26寸 B.25寸 C.13寸 D.寸9.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+510.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A. B. C. D.11.点到轴的距离是()A. B. C. D.12.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.1个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.已知正方形的一条对角线长,则该正方形的周长是___________.14.如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.15.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.16.若=2,则=_____.17.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.18.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.三、解答题(共78分)19.(8分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.20.(8分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).21.(8分)如图,中,,点是延长线上一点,平面上一点,连接平分.(1)若,求的度数;(2)若,求证:22.(10分)如图,△ABC的坐标依次为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC绕原点O顺时针旋转180°得到△A1B1C1.(1)画出△A1B1C1;(2)求在此变换过程中,点A到达A1的路径长.23.(10分)哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.24.(10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.25.(12分)计算:3tan30°−tan45°+2sin60°26.如图,半圆的直径,将半圆绕点顺时针旋转得到半圆,半圆与交于点.(1)求的长;(2)求图中阴影部分的面积.(结果保留)
参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.【详解】解:根据题意作出图形,∵坡度为1:2,∴设BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形然后求解.2、D【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.【详解】因为,BD=3,S△BCD==3,所以,,解得,CD=2,因为,C(2,0)所以,OD=4,所以,B(4,3)把B(4,3)代入y=,得k=12,所以,y=所以,S△AOC=故选D【点睛】本题考核知识点:反比例函数.解题关键点:熟记反比例函数性质.3、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【详解】解:如图,连接AM,交DE于点H,交BC于点P,
∵DE∥BC,
∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a
∵沿着折叠
∴AH=HM=5a,S△ADE=S△DEM=
∴PM=2a,
∵DE∥BC
∴
∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=
故选:B.【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.4、B【分析】根据位似图形的性质和坐标与图形的性质,进行解答即可.【详解】解:∵△ABC和△A′B′C′关于原点位似,且点A和它的对应点A′的坐标分别为(2,5),(-6,-15),∴对应点乘以-1,则△A′B′C′与△ABC的相似比为:1.故选:B.【点睛】本题考查的是位似变换,熟知在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k是解答此题的关键.5、B【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:B.【点睛】此题考查中心对称图形的特点,解题关键在于判断中心对称图形的关键是旋转180°后能够重合.6、D【分析】根据图象与x轴有两个交点可判定①;根据对称轴为可判定②;根据开口方向、对称轴和与y轴的交点可判定③;根据当时以及对称轴为可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x轴有两个交点可得,此结论正确;②对称轴为,即,整理可得,此结论正确;③抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;④当时,对称轴为,所以当时,即,此结论正确;⑤当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.7、D【分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°,∵OA=OF,∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.8、A【分析】取圆心O,连接OP,过O作OH⊥PQ于H,根据垂径定理求出PH的长,再根据勾股定理求出OP的值,即可求出直径.【详解】解:取圆心O,连接OP,过O作OH⊥PQ于H,由题意可知MH=1寸,PQ=10寸,
∴PH=5寸,
在Rt△OPH中,OP2=OH2+PH2,设半径为x,
则x2=(x-1)2+52,
解得:x=13,
故圆的直径为26寸,
故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.10、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD=2∠DBC=90°,∴S阴影=S扇形−S△ODC=−×3×3=−.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.11、C【分析】根据点的坐标的性质即可得.【详解】由点的坐标的性质得,点P到x轴的距离为点P的纵坐标的绝对值则点到轴的距离是故选:C.【点睛】本题考查了点的坐标的性质,掌握理解点的坐标的性质是解题关键.12、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b1﹣4ac>0,方程ax1+bx=0的两个根为x1=0,x1=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用二、填空题(每题4分,共24分)13、【分析】对角线与两边正好构成等腰直角三角形,据此即可求得边长,即可求得周长.【详解】令正方形ABCD,对角线交于点O,如图所示;∵AC=BD=4,AC⊥BD∴AO=CO=BO=DO=2∴AB=BC=CD=AD=∴正方形的周长为故答案为.【点睛】此题主要考查正方形的性质,熟练掌握,即可解题.14、【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S△AOC=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得,然后由正切函数的定义求得答案.【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,∴,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S△OBD=,S△AOC=2,∴,∴tan∠OAB=.故答案为:.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.15、65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理16、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.17、(2,0),(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标.【详解】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵点A2在双曲线上,
∴(2+a)•a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴点B2的坐标为(2,0);
作A3D⊥x轴于点D,设B2D=b,则A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵点A3在双曲线y=(x>0)上,
∴(2+b)•b=,
解得b=-+,或b=--(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴点B3的坐标为(2,0);
同理可得点B4的坐标为(2,0)即(4,0);
以此类推…,
∴点Bn的坐标为(2,0),
故答案为(2,0),(2,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.18、1.【解析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.三、解答题(共78分)19、(1)50,30;(2)答案见解析;(3)36;(4)1800人.【分析】(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.【详解】(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.20、(1)60°;(2)米.【解析】(1)根据方位角的概念得出相应角的角度,再利用平行线的性质和三角形内角和进行计算即可求得答案;(2)作CD⊥AB于点D,得到两个直角三角形,再根据三角函数的定义和特殊角的三角函数值可求得AD、BD的长,相加即可求得A、B的距离.【详解】解:(1)由题意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°−30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°−∠BAC−∠ACB=60°;(2)如图,作CD⊥AB于点D,在Rt△ACD中,AD=CD=AC∙sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:两个凉亭A,B之间的距离为(150+50)米.【点睛】本题考查了解直角三角形的应用,在解决有关方位角的问题时,一般根据题意理清图形中各角的关系,有时所给的方位角不在三角形中,需要通过平行线的性质或互余的角等知识转化为所需要的角,解决第二问的关键是作CD⊥AB构造含特殊角的直角三角形.21、(1);(2)详见解析【分析】(1)根据等腰三角形的性质及角平分线的性质证得∠A=∠BCE,再利用角的和差关系及外角性质可证得∠ABC=∠DCE,从而得到结果;(2)根据∠ABC=∠DBE可证得∠ABD=∠CBE,再结合(1)利用ASA可证明与全等,从而得到结论.【详解】解:(1),,又平分,,,又,,;(2)由(1)知,,,即,在与中,,≌(ASA),.【点睛】本题考查了等腰三角形的性质,角平分线的性质,外角性质,全等三角形的判定与性质,熟记性质定理是解题关键.22、(1)画图见解析;(2)点A到达A1的路径长为π.【分析】(1)根据旋转的定义分别作出点A,B,C绕原点旋转所得对应点,再首尾顺次连接即可得;(2)点A到达A1的路径是以O为圆心,OA为半径的半圆,据此求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)∵OA==,∴点A到达A1的路径长为×2π×=π.【点睛】本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23、(1)60;(2)12,图见解析;(3)450【分析】(1)用滑冰的人数除以滑冰的比例,即可解得本次调查共抽取的学生人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市交通需求预测咨询重点基础知识点
- 应对工作中突发事件的预案计划
- 资源共享在班级工作中的重要性计划
- 抢先获取2025年VB考试核心试题及答案
- 仓库成本控制与管理策略计划
- 2024年惠州市博罗县建工集团有限公司招聘真题
- 班级轮值制度的设计与实施计划
- 2024年安徽省农业农村厅下属事业单位真题
- 2024年河南循环科技产业集团招聘笔试真题
- 2024年赤峰中色锌业有限公司招聘笔试真题
- 小学美术1色彩的情感课件
- 奥沙利铂过敏反应
- 项目部临时动火作业审批表
- 机载直流用电设备电源特性要求及试验方法
- 项目质量管理评价表
- 饮料生产公司应急预案汇编参考范本
- 养老院老人入(出)院流程图
- 最新-临时救助申请审核审批表模板
- 蓝色大气商务商业计划书PPT模板
- 苏教版二年级(下册)科学全册单元测试卷含期中期末(有答案)
- 三年级数学下册口算脱式竖式练习题
评论
0/150
提交评论