2022年北京市数学九年级第一学期期末监测模拟试题含解析_第1页
2022年北京市数学九年级第一学期期末监测模拟试题含解析_第2页
2022年北京市数学九年级第一学期期末监测模拟试题含解析_第3页
2022年北京市数学九年级第一学期期末监测模拟试题含解析_第4页
2022年北京市数学九年级第一学期期末监测模拟试题含解析_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若二次函数y=-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y12.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm3.一个几何体的三视图如图所示,则这个几何体是()A.球体 B.圆锥 C.棱柱 D.圆柱4.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是(

)A.△ABC∽△A'B'C' B.点C、点O、点C'三点在同一直线上 C.AO:AA'=1∶2 D.AB∥A'B'5.一元二次方程的常数项是()A.﹣4 B.﹣3 C.1 D.26.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为()A.5 B.6 C. D.7.根据下表中的二次函数y=ax2+bx+c的自变量x与函数yx

-1

0

1

2

y

-1

-7-2

-7…A.只有一个交点 B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧 D.无交点8.二次函数的图象如图所示,对称轴为直线,下列结论不正确的是()A.B.当时,顶点的坐标为C.当时,D.当时,y随x的增大而增大9.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位 B.向右平移4个单位C.向上平移1个单位 D.向下平移1个单位10.如图,、、是的切线,、、是切点,分别交、于、两点.如,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.12.在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,,那么与的相似比为__________.13.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为.14.如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是____________.15.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.16.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.17.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.18.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.三、解答题(共66分)19.(10分)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.20.(6分)如图,于点,为等腰直角三角形,,当绕点旋转时,记.(1)过点作交射线于点,作射线交射线于点.①依题意补全图形,求的度数;②当时,求的长.(2)若上存在一点,且,作射线交射线于点,直接写出长度的最大值.21.(6分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.22.(8分)如图,在中,,,以为原点所在直线为轴建立平面直角坐标系,的顶点在反比例函数的图象上.(1)求反比例函数的解析式:(2)将向右平移个单位长度,对应得到,当函数的图象经过一边的中点时,求的值.23.(8分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.(1)求证:直线是的切线;(2)若,,求的长.24.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣1,0),且tan∠ACO=1.(1)求该反比例函数和一次函数的解析式;(1)求点B的坐标.25.(10分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.26.(10分)如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB=10,BC=8,求CE的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解.【详解】∵二次函数y=-x2+px+q的图像经过A(,n)、C(,n),

∴抛物线开口向下,对称轴为直线,∵点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,∴B(0,y1)离对称轴最近,点E离对称轴最远,∴y3<y2<y1.

故选:A.【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.2、D【解析】∴选D3、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.4、C【分析】直接利用位似图形的性质进而分别分析得出答案.【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',∴△ABC∽△A'B'C',点O、C、C'共线,AO:OA'=BO:OB'=1:2,∴AB∥A'B',AO:OA'=1:1.∴A、B、D正确,C错误.故答案为:C.【点睛】本题主要考查了位似变换,正确把握位似图形的性质是解题的关键.5、A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.【详解】解:一元二次方程的常数项是﹣4,故选A.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a、b、c分别叫二次项系数,一次项系数,常数项.6、B【分析】连接OE,OF,OG,根据切线性质证四边形ABCD为正方形,根据正方形性质和切线长性质可得DE=DF.【详解】连接OE,OF,OG,

∵AB,AD,DE都与圆O相切,

∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,

∵四边形ABCD为正方形,

∴AB=AD=11,∠A=90°,

∴∠A=∠AGO=∠AFO=90°,

∵OF=OG=5,

∴四边形AFOG为正方形,

则DE=DF=11-5=6,

故选:B【点睛】考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.7、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.8、C【解析】根据对称轴公式和二次函数的性质,结合选项即可得到答案.【详解】解:∵二次函数∴对称轴为直线∴,故A选项正确;当时,∴顶点的坐标为,故B选项正确;当时,由图象知此时即∴,故C选项不正确;∵对称轴为直线且图象开口向上∴当时,y随x的增大而增大,故D选项正确;故选C.【点睛】本题考查二次函数,解题的关键是熟练掌握二次函数.9、B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.故选:B.【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.10、C【分析】连接OA、OB、OE,由切线的性质可求出∠AOB,再由切线长定理可得出∠COD=∠AOB,可求得答案.【详解】解:连接OA、OE、OB,所得图形如下:由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.二、填空题(每小题3分,共24分)11、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.12、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,,,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.13、1【分析】先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.【详解】∵y=x2-2x+2=(x-1)2+1,

∴抛物线的顶点坐标为(1,1),

∵四边形ABCD为矩形,

∴BD=AC,

而AC⊥x轴,

∴AC的长等于点A的纵坐标,

当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,

∴对角线BD的最小值为1.

故答案为1.14、【解析】作ME⊥CD于E,MF⊥AB于F,连接MA、MC.当CD=6和CD=时在中求出半径MC,然后在中可求的值,于是范围可求.【详解】解:如图1,当CD=6时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,∵,∴ME=4,MF=3,∵ME⊥CD,CD=6,∴CE=3,∴,∴MA=MC=5,∵MF⊥AB,∴==,如图2,当CD=时,作ME⊥CD于E,MF⊥AB于F,连接MA、MC,∵,∴ME=4,MF=3,∵ME⊥CD,CD=,∴CE=,∴,∴MA=MC=8,∵MF⊥AB,∴==,综上所述,当时,.故答案是:.【点睛】本题考查了三角函数在坐标系和圆中的应用,作辅助线构造直角三角形利用垂径定理求出半径是解题的关键.15、(6,4).【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=设⊙P的半径为r,根据三角形的面积可得:r=过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.16、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.17、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.18、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.三、解答题(共66分)19、(1)①直线x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式进一步求解即可;(1)分两种情况:①,②,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c,∴点A坐标为(0,c),∵点A向右平移1个单位长度,得到点B,∴点B(1,c),∵点B在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴,即;(1)①如图,若,因为点A(0,c),B(1,c)都是整点,且指定区域内恰有一个整点,因此这个整点D的坐标必为(1,c-1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C(1,c-a)做位置与数量关系上的比较,必须考虑到紧邻点D的另一个整点E(1,c-1)不在指定区域内,所以可列出不等式组:,解得:;②如图,若,同理可得:,解得:;综上所述,符合题意的a的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.20、(1)①见解析,45°②7;(2)见解析,【分析】(1)①作于点H,交的延长线于点,证明∆AHO≌∆AGB,即可求得∠ODC的度数;②延长交于点,利用条件可求得AK、OK的长度,于是可求OD的长;(2)分析可知,点B在以O为圆心,OB为半径的圆上运动(个圆),所以当PB是圆O的切线时,PQ的值最大,据此可解.【详解】解:(1)①补全图形如图所示,过点作于点H,交的延长线于点,∵,,,∴∠AGB=∠AHO=∠C=,∴∠GAH=,∴∠OAH+∠HAB=∠GAB+∠HAB=,∴∠OAH=∠GAB,四边形为矩形,∵为等腰直角三角形,∴OA=AB,∴∆AHO≌∆AGB,∴AH=AG,∴四边形为正方形,∴∠OCD=45°,∴∠ODC=45°;②延长交于点,∵,OA=5,∴AK=4,∴OK=3,∵∠ODC=45°,∴DK=AK=4∴;(2)如图,∵绕点旋转,∴点B在以O为圆心,OB为半径的圆上运动(个圆),∴当PB是圆O的切线时,PQ的值最大,∵∴∴∠OPB=45°,∴OQ=OP=10,∴.∴长度的最大值是.【点睛】本题考查了与旋转有关的计算及圆的性质,作辅助线构造全等三角形、分析出点的运动轨迹是解题关键.21、(1)x=2.5或x=2;(2)x=.【分析】(1)利用因式分解法求解可得;

(2)利用公式法求解可得.【详解】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=2,∴(2x﹣5)(x﹣2)=2,则2x﹣5=2或x﹣2=2,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>2,则x=.【点睛】本题考查因式分解法、公式法解一元二次方程,解题的关键是掌握因式分解法、公式法解一元二次方程.22、(1);(2)值有或【分析】(1)过点作于点,根据,可求出△AOB的面积8,由等腰三角形的三线合一可知△AOD的面积为4,根据反比例函数k的几何意义几何求出k;

(2)分两种情况讨论:①当边的中点在的图象上,由条件可知,即可得到C点坐标为,从而可求得m;②当边的中点在的图象上,过点作于点,由条件可知,,因此中点,从而可求得m.【详解】解:(1)过点作于点,如图1∵,∴,∴,,即(2)①当边的中点在的图象上,如图2∵,∴,,点,即∴②当边的中点在的图象上,过点作于点,如图3∵,,∴中点即∴综上所述,符合条件的值有或【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.23、(1)见解析;(2)【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;

(2)利用勾股定理得出CD,再利用平行线分线段成比例进行计算即可.【详解】证明:(1)连接∵,∴,∵,∴,∴,∵∴,∴,∴是的切线(2)∵,∴,又∵,∴∵,∴∴∴∴.【点睛】此题考查切线的判定和性质,等腰三角形的性质,平行线分线段成比例,熟练运用切线的判定和性质是解题的关键.24、(1)反比例函数的解析式为,一次函数的解析式为y=1x+4;(1)点B坐标为(﹣2,﹣1).【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=1,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(1)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【详解】解:(1)过点A作AD⊥x轴,垂足为D.由A(n,6),C(﹣1,0)可得,OD=n,AD=6,CO=1∵tan∠ACO=1,∴=1,即,∴n=1,∴A(1,6).将A(1,6)代入反比例函数,得m=1×6=6,∴反比例函数的解析式为.将A(1,6),C(﹣1,0)代入一次函数y=kx+b,可得:,解得:,∴一次函数的解析式为y=1x+4;(1)由可得,,解得=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论