2023届陕西省西安爱知初级中学数学九上期末调研模拟试题含解析_第1页
2023届陕西省西安爱知初级中学数学九上期末调研模拟试题含解析_第2页
2023届陕西省西安爱知初级中学数学九上期末调研模拟试题含解析_第3页
2023届陕西省西安爱知初级中学数学九上期末调研模拟试题含解析_第4页
2023届陕西省西安爱知初级中学数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个2.四边形内接于⊙,点是的内心,,点在的延长线上,则的度数为()A.56° B.62° C.68° D.48°3.二次函数图象如图所示,下列结论:①;②;③;④;⑤有两个相等的实数根,其中正确的有()A.1个 B.2个 C.3个 D.4个4.已知,下列说法中,不正确的是()A. B.与方向相同C. D.5.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.6.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米7.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米 B.8米 C.5米 D.5.5米8.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为-3和1;④a-2b+c≥0,其中正确的命题是()A.①②③ B.①④ C.①③ D.①③④9.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)10.在同一平面直角坐标系中,若抛物线与关于y轴对称,则符合条件的m,n的值为()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-2二、填空题(每小题3分,共24分)11.如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为__________.12.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.13.抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为__________.14.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.15.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.16.如图,圆是一个油罐的截面图,已知圆的直径为5,油的最大深度(),则油面宽度为__________.17.若方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,则a的值是_____.18.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.20.(6分)解一元二次方程:(1)(2)21.(6分)如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.22.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.23.(8分)如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,求cosP的值.24.(8分)如图是某货站传送货物的平面示意图.原传送带与地面的夹角为,,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为.求:(1)新传送带的长度;(2)求的长度.25.(10分)解方程(1)(用公式法求解)(2)26.(10分)为了解九年级学生体育水平,学校对九年级全体学生进行了体育测试,并从甲、乙两班中各随机抽取名学生成绩(满分分)进行整理分析(成绩得分用表示,共分成四组:;,)下面给出了部分信息:甲班名学生体育成绩:乙班名学生体育成绩在组中的数据是:甲、乙两班被抽取学生体育成绩统计表平均数中位数众数方差甲班乙班根据以上信息,解答下列问题:,,;根据以上数据,你认为班(填“甲”或“乙”)体育水平更高,说明理由(两条理由):;.学校九年级学生共人,估计全年级体育成绩优秀的学生人数是多少?

参考答案一、选择题(每小题3分,共30分)1、D【分析】由“SAS”可证△DAE≌△BAG,可得BG=DE,即可判断①;设点DE与AB交于点P,由∠ADE=∠ABG,∠DPA=∠BPO,即可判断②;过点A作AM⊥DE,AN⊥BG,易证DE×AM=×BG×AN,从而得AM=AN,进而即可判断③;过点G作GH⊥AD,过点E作EQ⊥AD,由“AAS”可证△AEQ≌△GAH,可得AQ=GH,可得S△ADG=S△ABE,即可判断④.【详解】∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,又∵AD=AB,AG=AE,∴△DAE≌△BAG(SAS),∴BG=DE,∠ADE=∠ABG,故①符合题意,如图1,设点DE与AB交于点P,∵∠ADE=∠ABG,∠DPA=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,如图1,过点A作AM⊥DE,AN⊥BG,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴DE×AM=×BG×AN,又∵DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD交DA的延长线于点H,过点E作EQ⊥AD交DA的延长线于点Q,∴∠EAQ+∠AEQ=90°,∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,又∵AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴AD×GH=AB×AQ,∴S△ADG=S△ABE,故④符合题意,故选:D.【点睛】本题主要考查正方形的性质和三角形全等的判定和性质的综合,添加辅助线,构造全等三角形,是解题的关键.2、C【分析】由点I是的内心知,,从而求得,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I是的内心∴,∵∴∵四边形内接于⊙∴故答案为:C.【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.3、D【分析】根据图象与x轴有两个交点可判定①;根据对称轴为可判定②;根据开口方向、对称轴和与y轴的交点可判定③;根据当时以及对称轴为可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x轴有两个交点可得,此结论正确;②对称轴为,即,整理可得,此结论正确;③抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;④当时,对称轴为,所以当时,即,此结论正确;⑤当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D.【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.4、A【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6、C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.8、C【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=-1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(-3,0),把(1,0)代入可对①做出判断;由对称轴为x=-1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断;根据a、c的符号,以及对称轴可对④做出判断;最后综合得出答案.【详解】解:由图象可知:抛物线开口向上,对称轴为直线x=-1,过(1,0)点,

把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x=-1,即:整理得,b=2a,因此②不正确;由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(-3,0),因此方程ax2+bx+c=0的两根分别为-3和1;故③是正确的;

由a>0,b>0,c<0,且b=2a,则a-2b+c=a-4a+c=-3a+c<0,因此④不正确;

故选:C.【点睛】本题考查的是二次函数图象与系数之间的关系,能够根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式是解题的关键.9、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.10、D【解析】由两抛物线关于y轴对称,可知两抛物线的对称轴也关于y轴对称,与y轴交于同一点,由此可得二次项系数与常数项相同,一次项系数互为相反数,由此可得关于m、n的方程组,解方程组即可得.【详解】关于y轴对称,二次项系数与常数项相同,一次项系数互为相反数,∴,解之得,故选D.【点睛】本题考查了关于y轴对称的抛物线的解析式间的关系,弄清系数间的关系是解题的关键.二、填空题(每小题3分,共24分)11、6【分析】根据AB//CD,得出△AOB与△OCD相似,利用△AOB与△OCD的面积分别为8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)进行解答即可.【详解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD与△ACD的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)则OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,点E在第三象限∴k=xy=a×b=6故答案为6.【点睛】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.12、【分析】由题意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,过N做NG⊥BC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为秒时;由题意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如图:过N做NG⊥BC,垂足为G∵将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案为.【点睛】本题考查了相似三角形的判定及性质的运用、三角函数值的运用、勾股定理的运用,灵活利用相似三角形的性质和勾股定理是解答本题的关键.13、1【分析】易得顶点(2,-6),根据待定系数法,求出一次函数解析式,进而求出直线与坐标轴的交点,根据三角形的面积公式,即可求解.【详解】∵抛物线,∴顶点(2,-6),∵一次函数的图象经过点,∴,解得:k=,∴一次函数解析式为:,∴直线与坐标轴的交点坐标分别是:(0,3),(,0),∴一次函数图象与两坐标轴所围成的三角形面积=.故答案是:1.【点睛】本题主要考查二次函数和一次函数图象与平面几何的综合,掌握一次函数图象与坐标轴的交点坐标的求法,是解题的关键.14、且k≠1【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠1故答案为﹣≤k<且k≠1.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.15、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.16、1【分析】连接OA,先求出OA和OD,再根据勾股定理和垂径定理即可求出AD和AB.【详解】解:连接OA∵圆的直径为5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根据勾股定理可得:AD=∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.17、-3【分析】根据一元二次方程的定义列方程求出a的值即可.【详解】∵方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案为:-3【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程;一般形式为ax2+bx+c=0(a≠0),熟练掌握定义是解题关键,注意a≠0的隐含条件,不要漏解.18、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.三、解答题(共66分)19、(1)相切,理由见解析;(2)DE=.【分析】(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.【详解】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,AD==1.∵SACD=AD•CD=AC•DE,∴×1×3=×5DE.∴DE=.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.20、(1);(2)【分析】(1)利用直接开方法求解;(2),故用因式分解法解方程;【详解】(1)(2)【点睛】本题考查一元二次方程的解法,根据每题情况不一样选择合适的方法是解题的关键。21、电线杆子的高为4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一时刻物高与影长的比一定得到AG的长度,加上GB的长度即为电线杆AB的高度.【详解】过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:电线杆子的高为4米.【点睛】此题考查了相似三角形的应用,构造出直角三角形进行求解是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.23、【分析】作OCAB于C点,根据垂径定理可得AC、CP的长度,在OCA和OCP中,运用勾股定理分别求出OC、OP的长度,即可算得的值.【详解】解:作OCAB于C点,根据垂径定理,AC=BC=4cm,∴CP=4+2=6cm,在OCA中,根据勾股定理,得,在OCP中,根据勾股定理,得,故.【点睛】本题主要考察了垂径定理、勾股定理、求角的余弦值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论