江苏省连云港市海州区2022年数学九年级第一学期期末检测模拟试题含解析_第1页
江苏省连云港市海州区2022年数学九年级第一学期期末检测模拟试题含解析_第2页
江苏省连云港市海州区2022年数学九年级第一学期期末检测模拟试题含解析_第3页
江苏省连云港市海州区2022年数学九年级第一学期期末检测模拟试题含解析_第4页
江苏省连云港市海州区2022年数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.2.下列几何图形中,是中心对称图形但不是轴对称图形的是()A.圆 B.正方形 C.矩形 D.平行四边形3.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④4.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥35.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和16.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是()A.2 B. C. D.7.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm8.如图为二次函数的图象,在下列说法中:①;②方程的根是,;③④当时,随的增大而减小.不正确的说法有()A.① B.①② C.①③ D.②④9.已知二次函数的图象如图所示,对于下列结论:①;②;③;④;⑤方程的根是,,其中正确结论的个数是()A.5 B.4 C.3 D.210.若,则()A. B. C.1 D.11.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8912.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④二、填空题(每题4分,共24分)13.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是___.14.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.15.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.16.如图,点D、E分别是线段AB、AC上一点∠AED=∠B,若AB=8,BC=7,AE=5则,则DE=_____.17.计算:|﹣3|﹣sin30°=_____.18.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为______度.三、解答题(共78分)19.(8分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果按此速度增涨,该公司六月份的快递件数将达到多少万件?20.(8分)如图,等边的边长为8,的半径为,点从点开始,在的边上沿方向运动.(1)从点出发至回到点,与的边相切了次;(2)当与边相切时,求的长度.21.(8分)如图,矩形ABCD中,AB=3,BC=5,CD上一点E,连接AE,将△ADE绕点A旋转90°得△AFG,连接EG、DF.(1)画出图形;(2)若EG、DF交于BC边上同一点H,且△GFH是等腰三角形,试计算CE长.22.(10分)某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.(1)求两种机器人每小时分别搬运多少吨化工原料.(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?23.(10分)综合与探究如图1,平面直角坐标系中,直线分别与轴、轴交于点,.双曲线与直线交于点.(1)求的值;(2)在图1中以线段为边作矩形,使顶点在第一象限、顶点在轴负半轴上.线段交轴于点.直接写出点,,的坐标;(3)如图2,在(2)题的条件下,已知点是双曲线上的一个动点,过点作轴的平行线分别交线段,于点,.请从下列,两组题中任选一组题作答.我选择组题.A.①当四边形的面积为时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.B.①当四边形成为菱形时,求点的坐标;②在①的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.24.(10分)如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)25.(12分)某小型工厂9月份生产的、两种产品数量分别为200件和100件,、两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了、两种产品的生产数量和出厂单价,10月份产品生产数量的增长率和产品出厂单价的增长率相等,产品生产数量的增长率是产品生产数量的增长率的一半,产品出厂单价的增长率是产品出厂单价的增长率的2倍,设产品生产数量的增长率为(),若10月份该工厂的总收入增加了,求的值.26.如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.(1)图中AC边上的高为个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2、D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A.圆是中心对称图形,也是轴对称图形,故本选项不符合题意;B.正方形是中心对称图形,也是轴对称图形,故本选项不符合题意;C.矩形是中心对称图形,也是轴对称图形,故本选项不符合题意;D.平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意.故选D.【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键.3、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.4、A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.6、D【分析】首先过点B作BD⊥AC于点D,设BC=a,根据直线解析式得到点A、B坐标,从而求出OA、OB的长,易证△BCD≌△ACO,再根据相似三角形的对应边成比例得出比例式,即可解答.【详解】解:过点B作BD⊥AC于点D,设BC=a,∵直线与轴、轴分别交于点、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以点C的纵坐标是.故选:D.【点睛】本题考查相似三角形的判定与性质、角平分线的性质的综合运用,解题关键是恰当作辅助线利用角平分线的性质.7、B【解析】∵扇形的圆心角为120°,半径为6cm,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得,解得r=2cm.故选B.考点:圆锥和扇形的计算.8、A【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可.【详解】二次函数的图象的开口向下,与y轴正半轴相交,则①不正确二次函数的对称轴为,与x轴的一个交点为与x轴的另一个交点为方程的根是,则②正确二次函数的图象上,所对应的点位于第一象限,即,则③正确由二次函数的图象可知,当时,随的增大而减小,则④正确综上,不正确的说法只有①故选:A.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.9、B【分析】根据抛物线与轴的交点个数可对①进行判断;利用时函数值为负数可对②进行判断;由抛物线开口方向得,由抛物线的对称轴方程得到,由抛物线与轴交点位置得,于是可对③进行判断;由于时,,得到,然后把代入计算,则可对④进行判断;根据抛物线与轴的交点问题可对⑤进行判断.【详解】解:抛物线与轴有两个不同的交点,,∴,即①正确;时,,,∴,即②正确;抛物线开口向上,,抛物线的对称轴为直线,,抛物线与轴交点位于轴负半轴,,,所以③错误;,,,而,,所以④正确;抛物线与轴的交点坐标为、,即或3时,,方程的根是,,所以⑤正确.综上所述:正确结论有①②④⑤,正确结论有4个.故选:.【点睛】本题考查了二次函数与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小;一次项系数和二次项系数共同决定对称轴的位置;常数项决定抛物线与轴交点;抛物线与轴交点个数由△决定.10、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可.【详解】解:令=k,则x=2k,y=3k,z=4k,

∴.故选:D.【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.11、C【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:(分),∴小莹的个人总分为88分;故选:C.【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.12、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.二、填空题(每题4分,共24分)13、12π.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【详解】设扇形的半径为r.则=4π,解得r=6,∴扇形的面积==12π,故答案为12π.【点睛】本题考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=,扇形的面积公式S=,解题的关键是熟记这两个公式.14、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.15、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=;②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;所以tanA的值为或.16、【分析】先根据题意得出△AED∽△ABC,再由相似三角形的性质即可得出结论.【详解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案为:.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.17、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.18、1【分析】根据圆内接四边形的性质求出∠ADC的度数,由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°,∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=1°,故答案为:1.【点睛】本题考查了圆内接四边形的问题,掌握圆内接四边形的性质、圆周角定理、三角形外角的性质是解题的关键.三、解答题(共78分)19、(1)10%;(2)13.31【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)根据增长率相同,由五月份的总件数即可得出六月份的总量.【详解】(1)设该快递公司投递总件数的月平均增长率为,依题意得,解方程得,(不合题意,舍弃).答:该快递公司投递总件数的月平均增长率为10%.(2)六月份快递件数为(万件).答:该公司六月份的快递件数将达到13.31万件.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题.20、(1)6;(2)的长度为2或.【分析】(1)由移动过程可知,圆与各边各相切2次;(2)由两种情况,分别构造直角三角形,利用勾股定理求解.【详解】解:(1)由移动过程可知,圆与各边各相切2次,故共相切6次.(2)情况如图,E,F为切点,则O1E=O2F=因为是等边三角形所以∠A=∠C=60°所以∠AO1E=30°所以AE=所以由O1E2+AE2=O1A2得.解得:=2所以AE=1因为AO1E≌CO2F(AAS)所以CF=AE=1所以AF=AC-CF=8-1=7所以,.所以,的长度为2或.【点睛】考核知识点:切线性质.理解切线性质,利用勾股定理求解.21、(1)见解析;(2)CE=3-【分析】(1)根据题意作图即可;(2)根据旋转的性质得到DE=FG,△ADF、△BHF是等腰直角三角形,故求出FH=,再根据等腰三角形的性质得到GF=FH==DE,故可求出CE的长.【详解】解:(1)如图所示:(2)由旋转得,AD=AF=5,DE=GF∵∠BAD=90°∴△ADF为等腰直角三角形,∴A、B、F在同一直线上∴BF=2=BH∴△BHF为等腰直角三角形,∴HF==,∵△GFH是等腰三角形且∠GFH=90°+45°=135°∴GF=FH==DE∵CD=AB=3∴CE=CD-DE=3-.【点睛】此题主要考查矩形及旋转的性质,解题的关键是熟知等腰三角形的判定与性质.22、(1)型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【分析】(1)设B型机器人每小时搬运x吨化工原料,则A型机器人每小时搬运(x+30)吨化工原料,根据A型机器人搬运900吨所用的时间与B型机器人搬运600吨所用的时间相等建立方程求出其解就可以得出结论.

(2)设A型机器人工作t小时,根据这批化工原料在11小时内全部搬运完毕列出不等式求解.【详解】解:(1)设型机器人每小时搬运吨化工原料,则型机器人每小时搬运吨化工原料,根据题意,得,解得.经检验,是所列方程的解.当时,.答:型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)设型机器人工作小时,根据题意,得,解得.答:A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【点睛】本题考查的是分式方程应用题和列不等式求解问题,找相等关系式是解题关键,(1)根据A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等建立方程,分式方程应用题的解需要双检,一检是否是方程的根,二检是否符合题意;(2)总工作量-A型机器人的工作量≤B型机器人11小时的工作量,列不等式求解.23、(1);(2),,;(3)A.①,②,,;B.①,②,,.【分析】(1)根据点在的图象上,求得的值,从而求得的值;(2)点在直线上易求得点的坐标,证得可求得点的坐标,证得即可求得点的坐标;(3)A.①作轴,利用平行四边的面积公式先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.①作轴,根据菱形的性质结合相似三角形的性质先求得点的纵坐标,从而求得答案;②分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;【详解】(1)在的图象上,,,∴点的坐标是,在的图象上,∴,∴;(2)对于一次函数,当时,,∴点的坐标是,当时,,∴点的坐标是,∴,,在矩形中,,,∴,∴,,,,∴点的坐标是,矩形ABCD中,AB∥DG,∴∴点的坐标是,故点,,的坐标分别是:,,;(3)A:①过点作轴交轴于点,轴,,四边形为平行四边形,的纵坐标为,∴,∴,∴点的坐标是,②当时,如图1,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图2,过点作⊥轴于,直线交轴于,∵,∴,,∴,∴,,∵点的坐标是,点的坐标是,∴,,,点的坐标是,当时,如图3,点与点关于轴对称,由轴对称的性质可得:点的坐标是;B:①过点作轴于点,,,∴,,,,四边形为菱形,,∵轴,∴ME∥BO,∴,,,,的纵坐标为,∴,∴,∴点的坐标是;②当时,如图4,点与点关于轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论