




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如右图要测量小河两岸相对的两点、的距离,可以在小河边取的垂线上的一点,测得米,,则小河宽为()A.米 B.米 C.米 D.米2.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.3.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.4.方程x2﹣2x﹣4=0的根的情况()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.没有实数根5.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.6.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.37.若,则的值为()A. B. C. D.﹣8.正六边形的周长为6,则它的面积为()A. B. C. D.9.已知反比例函数y=的图象经过P(﹣2,6),则这个函数的图象位于()A.第二,三象限 B.第一,三象限C.第三,四象限 D.第二,四象限10.抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示.下列叙述中:①;②关于的方程的两个根是;③;④;⑤当时,随增大而增大.正确的个数是()A.4 B.3 C.2 D.111.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣312.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.12二、填空题(每题4分,共24分)13.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.14.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________.15.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.16.若,且一元二次方程有实数根,则的取值范围是.17.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.18.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.三、解答题(共78分)19.(8分)抛物线过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?20.(8分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.21.(8分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.22.(10分)如图,在△ABC中,BC=12,tanA=,∠B=30°,求AC的长和△ABC的面积.23.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.24.(10分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.25.(12分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.(1)求证:;(2)若,,求的长.26.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据锐角三角函数的定义即可得出结论.【详解】解:在Rt△ACP中,tan∠ACP=∴米故选A.【点睛】此题考查是解直角三角形,掌握锐角三角函数的定义是解决此题的关键.2、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.3、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.4、B【详解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有两个不相等的实数根.故选B.【点睛】一元二次方程根的情况:(1)b2-4ac>0,方程有两个不相等的实数根;(2)b2-4ac=0,方程有两个相等的实数根;(3)b2-4ac<0,方程没有实数根.注:若方程有实数根,那么b2-4ac≥0.5、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.7、C【分析】将变形为﹣1,再代入计算即可求解.【详解】解:∵,∴=﹣1=﹣1=.故选:C.【点睛】考查了比例的性质,解题的关键是将变形为.8、B【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴该六边形的面积为:.故选:B.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.9、D【分析】将点P(-2,6)代入反比例函数求出k,若k>0,则函数的图象位于第一,三象限;若k<0,则函数的图象位于第二,四象限;【详解】∵反比例函数的图象经过P(﹣2,6),∴6=,∴k=-12,即k<0,这个函数的图象位于第二、四象限;故选D.【点睛】本题主要考查了反比例函数的图像性质,掌握反比例函数的图像是解题的关键.10、B【分析】由抛物线的对称轴是,可知系数之间的关系,由题意,与轴的一个交点坐标为,根据抛物线的对称性,求得抛物线与轴的一个交点坐标为,从而可判断抛物线与轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当时,代入解析式,可求得函数值,即可判断其的值是正数或负数.【详解】抛物线的对称轴是;③正确,与轴的一个交点坐标为抛物线与与轴的另一个交点坐标为关于的方程的两个根是;②正确,当x=1时,y=;④正确抛物线与轴有两个不同的交点,则①错误;当时,随增大而减小当时,随增大而增大,⑤错误;②③④正确,①⑤错误故选:B.【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键.11、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.二、填空题(每题4分,共24分)13、【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,
故从中任取一个数,则恰为奇数的概率是
,
故答案为:.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.14、0.1【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+1+3+2+1=36个.概率为36÷90=0.1.故答案为:0.1.15、1【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明OAB∽OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为1.【详解】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴OAB∽OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为:1.【点睛】本题综合考查了相似三角形的判定与性质,平行线的性质,线段的中点坐标,反比例函数的性质,三角形的面积公式等知识,重点掌握反比例函数的性质,难点根据三角形的面积求反比例函数系数的值.16、且.【解析】试题分析:∵,.∴一元二次方程为.∵一元二次方程有实数根,∴且.考点:(1)非负数的性质;(2)一元二次方程根的判别式.17、(﹣1,1)(1,3)【分析】根据图象可知抛物线y=﹣x2+2x+k过点(3,1),从而可以求得k的值,进而得到抛物线的解析式,然后即可得到点B和点C的坐标.【详解】解:由图可知,抛物线y=﹣x2+2x+k过点(3,1),则1=﹣32+2×3+k,得k=3,∴y=﹣x2+2x+3=﹣(x﹣3)(x+1),当x=1时,y=1+1+3=3;当y=1时,﹣(x﹣3)(x+1)=1,∴x=3或x=﹣1,∴点B的坐标为(﹣1,1),点C的坐标为(1,3),故答案为:(﹣1,1),(1,3).【点睛】本题考查了二次函数图像上点的坐标特征,二次函数与坐标轴的交点问题,二次函数与x轴的交点横坐标是ax2+bx+c=1时方程的解,纵坐标是y=1.18、①③④【分析】由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则m>AC,①成立;
①成立,那么②不成立;
最小值为AB与底面重合,故n=AB,故③成立;
由上可知,影子的长度先增大后减小,④成立.
故答案为:①③④.三、解答题(共78分)19、(1)b,c的值分别为5,-5;(2)当时有最大值【分析】(1)把点代入求解即可得到b,c的值;(2)代入二次函数一般式中顶点坐标的横坐标求解公式进行求解即可.【详解】解:(1)∵抛物线过点(0,-5)和(2,1),∴,解得,∴b,c的值分别为5,-5.(2)a=-1,b=5,∴当x=时y有最大值.【点睛】本题考查了利用待定系数法求解析式,熟记二次函数的图象和性质是解题的关键.20、解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【分析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。【详解】解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【点睛】图形的平移就是点的平移,依次将点进行平移再连接得到的图形即为平移后得到图形;一定要区分中心对称和轴对称,中心对称的对称中心是一个点,将原图沿着对称中心旋转180°可与原图重合;轴对称是关于一条直线对称,可沿着直线折叠与原图重合。21、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠BAF=∠EBC,∴sin∠EBC=.又∵在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.在Rt△ABC中,BC=【点睛】本题考查了切线的判定定理,相似三角形的判定及性质,等腰三角形三线合一的性质,锐角三角函数等知识,作辅助线构造熟悉图形,实现角或线段的转化是解题的关键.22、10,24+18【分析】作CD⊥AB于D,根据直角三角形的性质求出CD,根据余弦的定义求出BD,根据正切的定义求出AD,根据勾股定理求出AC,根据三角形的面积公式求出△ABC的面积.【详解】解:作CD⊥AB于D,在Rt△CDB中,∠B=30°,∴CD=BC=6,BD=BC•cosB=12×=,在Rt△ACD中,tanA=,∴,即,解得,AD=8,由勾股定理得,AC=,△ABC的面积=×AB×CD=×(8+6)×6=24+18.【点睛】本题考查的是解直角三角形,掌握锐角三角函数的定义、勾股定理是解题的关键.23、(1)详见解析;(2)详见解析【分析】(1)根据题意得出,,根据AAS即可证明;(2)由(1)可得到,再根据菱形的性质得出,即可证明平行四边形OCFD是矩形.【详解】证明:(1),,.E是CD中点,,又(AAS)(2),,.,四边形OCFD是平行四边形,平行四边形ABCD是菱形,.平行四边形OCFD是矩形.【点睛】此题考查矩形的判定和全等三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肺解剖的考试题及答案
- 方言8级考试题及答案
- 2025个人小额信用贷款借款合同范本
- 冬季四防考试题及答案
- 中国裸铜线项目创业投资方案
- 华能黑龙江公司新能源分公司-企业报告(业主版)
- 电路基础考试题及答案
- 电工电子联考试题及答案
- 电叉车操作考试题及答案
- 中国乙xi柠檬酸三丁酯(ATBC)项目创业投资方案
- 二构钢筋包工合同范本
- 医院培训课件:《中医护理文书书写规范》
- 2025团校入团积极分子100题题库(含答案)
- 2025-2030中国皮肤外用药市场竞品分析与产品定位报告
- 2025北京市大兴区人民法院临时辅助用工招聘6人备考考试题库附答案解析
- 建筑工程项目技术总结报告模板
- 鼠疫实验室生物安全培训课件
- 2025贵州黔西南州州直机关面向全州遴选公务员31人考试模拟试题及答案解析
- 2025福建省盐业集团有限责任公司招聘13人笔试历年参考题库附带答案详解
- 小学数学学科核心素养评价指标体系
- 信息系统审计手册
评论
0/150
提交评论