




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.计算()A. B. C. D.2.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去参观,两人恰好选择同一古迹景点的概率是()A. B. C. D.3.下列几何体中,主视图是三角形的是()A. B. C. D.4.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.5.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A. B. C. D.6.将0.000102用科学记数法表示为()A. B. C. D.7.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2 B.3 C.4 D.58.向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒9.若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍 B.8倍 C.4倍 D.2倍10.抛物线经过点与,若,则的最小值为()A.2 B. C.4 D.11.如图是一根空心方管,则它的主视图是()A. B. C. D.12.下列事件中,必然事件是()A.抛掷个均匀的骰子,出现点向上 B.人中至少有人的生日相同C.两直线被第三条直线所截,同位角相等 D.实数的绝对值是非负数二、填空题(每题4分,共24分)13.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.14.抛物线的对称轴为__________.15.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.16.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm17.在中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与相似.18.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?20.(8分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.21.(8分)用适当的方法解下列方程:(1)x2-6x+1=0(2)x2-4=2x+422.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣4,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1,并写出C1的坐标;(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1.23.(10分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.24.(10分)如图,在平行四边形中,连接对角线,延长至点,使,连接,分别交,于点,.(1)求证:;(2)若,求的长.25.(12分)如图,在平面直角坐标系中,ΔABC的三个顶点坐标分别为A(-2,1)、B(-1,4)、C(-3,2).(1)画图:以原点为位似中心,位似比为1:2,在第二象限作出ΔABC的放大后的图形(2)填空:点C1的坐标为,=.26.为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.(1)求这天“岁及以上行人”中每天违章人数的众数.(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据同底数幂乘法公式进行计算即可.【详解】.故选:B.【点睛】本题考查同底数幂乘法,熟记公式即可,属于基础题型.2、A【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.;【详解】解:(1)设蔡国故城为“A”,白圭庙为“B”,伏羲画卦亭为“C”,画树状图如下:
由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;选择同一古迹景点的结果为AA,BB,CC.∴两人恰好选择同一古迹景点的概率是:.故选A.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.4、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.5、D【解析】根据主视图是从物体正面看所得到的图形判断即可.【详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【点睛】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000102=1.02×10−4,
故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.8、C【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,∴抛物线的对称轴为:秒,∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高;故选:C.【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.9、A【分析】根据正方形的面积公式:s=a2,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【详解】解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的4倍,那么正方形的面积是原来正方形面积的4×4=16倍.故选A.【点睛】此题考查相似图形问题,解答此题主要根据正方形的面积的计算方法和积的变化规律解决问题.10、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【详解】将点A、B的坐标分别代入,得,,∵,∴,得:b,∴b的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.11、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:
故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.12、D【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【详解】A.抛掷个均匀的骰子,出现点向上的概率为,错误.B.367人中至少有人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D.实数的绝对值是非负数,正确.故答案为:D.【点睛】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.二、填空题(每题4分,共24分)13、1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.14、【分析】根据抛物线的解析式利用二次函数的性质,即可找出抛物线的对称轴,此题得解.【详解】解:∵抛物线的解析式为,
∴抛物线的对称轴为直线x=故答案为:.【点睛】本题考查二次函数的性质,解题的关键是明确抛物线的对称轴是直线x=.15、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.16、12π【分析】根据弧长公式代入可得结论.【详解】解:根据题意,扇形的弧长为,故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.17、【解析】当时,∵∠A=∠A,∴△AED∽△ABC,此时AE=;当时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=;故答案是:.18、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.三、解答题(共78分)19、(1)(0<x<4);(1)当x=1时,S△BDE最大,最大值为6cm1.【分析】(1)根据已知条件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的对应边成比例求得;最后用x、y表示该比例式中的线段的长度;(1)根据∠A=90°得出S△BDE=•BD•AE,从而得到一个面积与x的二次函数,从而求出最大值;【详解】(1)动点D运动x秒后,BD=1x.又∵AB=8,∴AD=8-1x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为(0<x<4).(1)解:S△BDE==(0<x<4).当时,S△BDE最大,最大值为6cm1.【点睛】本题主要考查相似三角形的判定与性质、三角形的面积列出二次函数关系式,利用二次函数求最值问题,建立二次函数模型是解题的关键.20、(1);(2)P=
.【解析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4),(2,3),(3,2),(4,1)抽到数字和为“5”的概率P=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)x1=3+2,x2=3-2;(2)x1=-2,x2=4【分析】(1)利用配方法进行求解一元二次方程即可;(2)根据十字相乘法进行求解一元二次方程即可.【详解】解:(1),,解得:;(2),,解得:.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.22、(1)见解析,(1,3);(1)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(1)分别作出点A、B绕C点顺时针旋转90°后得到的对应点,再首尾顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,3);(1)如图所示,△A1B1C1即为所求.【点睛】本题主要考查作图-旋转变换和轴对称变换,解题的关键是掌握旋转变换和轴对称变换的定义与性质,并据此得出变换后的对应点.23、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此证明△ABC∽△ADE,得到,将数值代入即可求得AB.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据库的安全性与管理策略试题及答案
- 托儿所火灾应急预案范文(3篇)
- 软件设计师考试核心试题及答案解析
- 计算机软件考试常见错误分析
- 行政管理社会服务试题及答案总结
- 便捷复习的试题及答案高效利用
- 企业财务健康状况与战略制定的关系试题及答案
- 高考数学难题攻略与答案
- 法学概论的重要概念归纳与试题及答案
- 2025年网络安全架构与运营考察试题及答案
- 漆房外协协议书
- 2025年能源行业能源需求预测与市场发展趋势2025
- 2024年“蓝桥杯”科学素养竞赛考试题库(含答案)
- 数据库应用技术-第三次形考作业(第10章~第11章)-国开-参考资料
- 2023年小学科学实验知识竞赛试题库含答案
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- 板式换热器、半容积式换热器换热器面积计算表(自动计算)
- 工程测量收费标准
- 村级组织权力清单、责任清单和负面清单x
- 高一化学第二学期期末考试试题
- PID控制经典PPT
评论
0/150
提交评论