




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.二次函数的最小值是()A.2 B.2 C.1 D.12.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.13.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为()A.1.1米 B.1.5米 C.1.9米 D.2.3米4.已知二次函数的与的部分对应值如表:下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是()A. B. C. D.5.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()A. B. C. D.6.如图,在△ABC中,点D、E分别在AB、AC边上,DE与BC不平行,那么下列条件中,不能判断△ADE∽△ACB的是()A.∠ADE=∠C B.∠AED=∠B C. D.7.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30° B.40° C.45° D.50°8.若,且,则的值是()A.4 B.2 C.20 D.149.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.10.如图,在平行四边形中,点是上任意一点,过点作交于点,连接并延长交的延长线于点,则下列结论中错误的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.12.中,若,,,则的面积为________.13.如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限.点在轴正半轴上,连结交反比例函数图象于点.为的平分线,过点作的垂线,垂足为,连结.若是线段中点,的面积为4,则的值为______.14.若方程的两根,则的值为__________.15.已知一次函数与反比例函数的图象交于点,则________.16.如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.17.设、是一元二次方程的两实数根,则的值为_________18.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是_________.三、解答题(共66分)19.(10分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,.求证.(先填空,再证明)证明:20.(6分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)的面积是_______;(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;(3)若为线段上的任一点,则变换后点的对应点的坐标为_______.21.(6分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱.22.(8分)武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).23.(8分)夏季多雨,在山坡处出现了滑坡,为了测量山体滑坡的坡面的长度,探测队在距离坡底点米处的点用热气球进行数据监测,当热气球垂直上升到点时观察滑坡的终端点时,俯角为,当热气球继续垂直上升90米到达点时,探测到滑坡的始端点,俯角为,若滑坡的山体坡角,求山体滑坡的坡面的长度.(参考数据:,结果精确到0.1米)24.(8分)二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)若方程有两个不相等的实数根,求的取值范围;(3)若抛物线与直线相交于,两点,写出抛物线在直线下方时的取值范围.25.(10分)在中,.(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;(2)在图②中作,使它满足以下条件:①圆心在边上;②经过点;③与边相切.(尺规作图,只保留作图痕迹,不要求写出作法)26.(10分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.2、B【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选B.【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.3、D【分析】根据黄金分割点的比例,求出距离即可.【详解】∵黄金分割点的比例为(米)∴主持人站立的位置离舞台前沿较近的距离约为(米)故答案为:D.【点睛】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键.4、B【分析】先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的性质求出x的值,即可对⑤进行判断.【详解】设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称轴为直线x==2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),开口向上,∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,则⑤错误.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.5、C【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故选C.6、C【解析】根据已知条件知∠A=∠A,再添加选项中的条件依次判断即可得到答案.【详解】解:∵∠A=∠A,∴添加∠ADE=∠C,△ADE∽△ACB,故A正确;∴添加∠AED=∠B,△ADE∽△ACB,故B正确;∴添加,△ADE∽△ACB,故D正确;故选:C.【点睛】此题考查相似三角形的判定定理,已知一个角相等时,再确定另一组角相等或是构成已知角的两边对应成比例,即可证明两个三角形相似.7、A【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选A.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、A【分析】根据,且,得到,即可求解.【详解】解:∵,∴,∵,∴,∴,故选:A.【点睛】本题考查比例的性质,掌握比例的性质是解题的关键.9、C【解析】正面的数字是偶数的情况数是2,总的情况数是5,用概率公式进行计算即可得.【详解】从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选C.【点睛】本题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.10、C【分析】根据平行四边形的性质可得出AD=EF=BC、AE=DF、BE=CF,然后根据相似三角形的对应边成比例一一判断即可.【详解】∵四边形ABCD为平行四边形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论A正确;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故结论B正确;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论C错误;D.∵ABCD是平行四边形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故结论D正确.故选:C.【点睛】本题考查了相似三角形的判定与性以及平行四边形的性质,根据相似三角形的性质逐一分析四个结论的正误是解题的关键.二、填空题(每小题3分,共24分)11、【分析】首先设AB=CD=AD=BC=a,再根据抛物线解析式可得E点坐标,表示出C点横坐标和纵坐标,进而可得方程﹣5﹣a=﹣5,再解即可.【详解】设AB=CD=AD=BC=a,∵抛物线y=(x+1)2﹣5,∴顶点E(﹣1,﹣5),对称轴为直线x=﹣1,∴C的横坐标为﹣1,D的横坐标为﹣1﹣,∵点C在抛物线y=(x+1)2﹣5上,∴C点纵坐标为(﹣1+1)2﹣5=﹣5,∵E点坐标为(﹣1,﹣5),∴B点纵坐标为﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合题意,舍去),故答案为:.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、正方形的性质.12、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.13、【分析】连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,
可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件D是线段AC中点,DH∥AF,可得2DH=AF,则点D(2m,),证明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,
∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,
∴A与B关于原点对称,
∴O是AB的中点,
∵BE⊥AE,
∴OE=OA,
∴∠OAE=∠AEO,
∵AE为∠BAC的平分线,
∴∠DAE=∠AEO,
∴AD∥OE,
∴S△ACE=S△AOC,
∵D是线段AC中点,的面积为4,
∴AD=DC,S△ACE=S△AOC=8,
设点A(m,),∵D是线段AC中点,DH∥AF,
∴2DH=AF,
∴点D(2m,),∵CH∥GD,AG∥DH,
∴∠ADG=∠DCH,∠DAG=∠CDH,在△AGD和△DHC中,
∴S△HDC=S△ADG,
∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC=k+k+=8;
∴k=8,
∴k=.
故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.14、1【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=1,故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.15、1【分析】先把P(a−2,3)代入y=2x−3,求得P的坐标,然后根据待定系数法即可求得.【详解】∵一次函数y=2x−3经过点P(a−2,3),∴3=2(a−2)−3,解得a=5,∴P(3,3),∵点P在反比例函数的图象上,∴k=3×3=1,故答案为1.【点睛】本题考查了一次函数和反比例函数的交点问题,求得交点坐标是解题的关键.16、16【分析】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.【详解】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE为等边三角形,∴AE=AC=8,CF=AC=4,则四边形ABCD的面积=△CAB的面积=×8×4=16,故答案为:16.【点睛】考核知识点:等边三角形判定和性质,三角函数.作辅助线,构造直角三角形是关键.17、27【详解】解:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.【点睛】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.18、2或【分析】设BF=,根据折叠的性质用x表示出B′F和FC,然后分两种情况进行讨论(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根据两三角形相似对应边成比例即可求解.【详解】设BF=,则由折叠的性质可知:B′F=,FC=,(1)当△B′FC∽△ABC时,有,即:,解得:;(2)当△B′FC∽△BAC时,有,即:,解得:;综上所述,可知:若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是2或故答案为2或.【点睛】本题考查了三角形相似的判定和性质,解本题时,由于题目中没有指明△B′FC和△ABC相似时顶点的对应关系,所以根据∠C是两三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;两种情况分别进行讨论,不要忽略了其中任何一种.三、解答题(共66分)19、已知,分别是∠BAC、∠上的角平分线,【分析】根据相似三角形的性质,对应边成比例,对应角相等,可证得和相似,再利用相似三角形的性质求解.【详解】已知,分别是∠BAC、∠上的角的平分线,求证:∵△ABC∽△A′B′C′,
∴,∠B=∠,∠BAC∠,∵分别是∠BAC、∠上的角的平分线,∴∠BAD∠,∴,∴,【点睛】本题实际上是相似三角形的性质的拓展,不但有对应角的平分线等于相似比,对应边上的高,对应中线也都等于相似比.20、(1)12;(2)见解析;(3).【分析】(1)根据三角形的面积公司求出的面积即可;(2)根据与的相似比为,点在第一象限,得出,,的坐标,连接起来即可;(3)根据与的相似比为,点的坐标为点P横纵坐标的一半.【详解】(1)根据三角形面积公式得∴的面积是12故答案为:12;(2)如图所示(3)∵与的相似比为∴变换后点的横坐标为点P横坐标的一半,点的纵坐标为点P纵坐标的一半∴则变换后点的对应点的坐标为.【点睛】本题考查了坐标轴的作图和变换问题,掌握三角形的面积公式以及相似三角形的性质是解题的关键.21、1.【解析】试题分析:设长方体的底面长为x米,则底面宽为(x-2)米,由题意,得x(x-2)×1=15,解得:=5,=-3(舍去).底面宽为5-2=3米.矩形铁皮的面积为:(5+2)(3+2)=35,这张矩形铁皮的费用为:20×35=1元.故答案为1.考点:一元二次方程的应用.22、(1);(2)【分析】(1)先画出树状图,得出所有等情况数和小孟、小柯都参加实验A考查的情况数,再根据概率公式即可得出答案;(2)根据每人都有2种选法,得出共有8种等情况数,他们三人中至少有两人参加实验B的有4种,再根据概率公式即可得出答案.【详解】解:(1)画树状图如图所示:∵两人的参加实验考查共有四种等可能结果,而两人均参加实验A考查有1种,∴小孟、小柯都参加实验A考查的概率为.(2)共有8种等情况数,他们三人中至少有两人参加实验B的有4种,所以他们三人中至少有两人参加实验B的概率是.故答案为:.【点睛】本题考查了数据统计的知识,中考必考题型,重点需要掌握树状图的画法.23、的长为177.2米.【分析】过点作,垂足为,作,垂足为,设,先根据的正切值得出,再根据的正切值得出,进而计算出,最后根据列出方程求解即得.【详解】如下图,过点作,垂足为,作,垂足为设∵在中,∴,∵四边形为矩形∴.∵,∴,∵在中,,∴∴∵在中,,∴∵四边形为矩形∴∴∴解得∴.答:的长为177.2米.【点睛】本题是解直角三角形题型,考查了特殊角三角函数,解题关键是将文字语言转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咖啡因与氨茶碱中毒的临床护理
- 公民健康教育66条
- 湖南长沙一中2025届高三月考(八)-化学答案
- 2025年小班第一学期班务总结模版
- 伏格特-小柳-原田综合征的临床护理
- 脑蛛网膜炎的临床护理
- 游戏客服工作总结模版
- 狼性管理模式之人力资源培训讲义
- 心衰超滤护理规范与实施要点
- 妊娠合并传染病护理查房
- 秘书公文写作范文
- 旅游经济专业知识和实务经济师考试(中级)试卷及解答参考(2025年)
- 2024年吉林省长春市中考地理试卷(含答案与解析)
- 基于平衡计分卡绩效管理研究-以青岛啤酒为例
- 方山县赤坚岭至刘家坡村段、横泉水库至东坡村段防洪能力提升工程环评报告书
- 一次性筷子购销合同
- AQ/T 1119-2023 煤矿井下人员定位系统通 用技术条件(正式版)
- 家庭护理服务劳务合同范本
- 幼儿园班级幼儿图书目录清单(大中小班)
- 四川省自贡市2023-2024学年八年级下学期期末数学试题
- 借用舞台布置设备协议
评论
0/150
提交评论