




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,把正三角形绕着它的中心顺时针旋转60°后,是()A. B. C. D.2.下列图像中,当时,函数与的图象时()A. B. C. D.3.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A. B. C. D.4.如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动.若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为()A. B. C. D.5.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=06.二次函数,当时,则()A. B. C. D.7.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±8.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.59.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°10.二次函数的最小值是()A.2 B.2 C.1 D.111.下列事件不属于随机事件的是()A.打开电视正在播放新闻联播 B.某人骑车经过十字路口时遇到红灯C.抛掷一枚硬币,出现正面朝上 D.若今天星期一,则明天是星期二12.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)14.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.15.如图,绕着点顺时针旋转得到,连接,延长交于点,若,则的长为__________.16.若抛物线的顶点在坐标轴上,则b的值为________.17.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.18.小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.20.(8分)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?21.(8分)如图,已知抛物线.(1)用配方法将化成的形式,并写出其顶点坐标;(2)直接写出该抛物线与轴的交点坐标.22.(10分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).23.(10分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.24.(10分)端午节放假期间,小明和小华准备到巴马的水晶宫(记为A)、百魔洞(记为B)、百鸟岩(记为C)、长寿村(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)求小明选择去百魔洞旅游的概率.(2)用树状图或列表的方法求小明和小华都选择去长寿村旅游的概率.25.(12分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.26.LED显示屏(LEDdisplay)是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个正三角形网格的示意图,其中每个小正三角形的边长均为l.位于中点处的输入光点按图2的程序移动.(1)请在图1中画出光点经过的路径:(2)求光点经过的路径总长.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据旋转的性质判断即可.【详解】解:∵把正三角形绕着它的中心顺时针旋转60°,∴图形A符合题意,故选:A.【点睛】本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.2、D【分析】根据直线直线y=ax+b经过的象限得到a>0,b<0,与ab>0矛盾,则可对A进行判断;根据抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,由此可对B进行判断;根据抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,由此可对C进行判断;根据抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,并且b<0,得到直线与y轴的交点在x轴下方,由此可对D进行判断.【详解】解:A、对于直线y=ax+b,得a>0,b<0,与ab>0矛盾,所以A选项错误;
B、由抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,所以B选项错误;
C、由抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,所以C选项错误;
D、由抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,由于ab>0,则b<0,所以直线与y轴的交点在x轴下方,所以D选项正确.
故选:D.【点睛】本题考查了一次函数和二次函数的图像与性质,掌握函数的性质,从而判断图像是解题的基础.3、A【解析】由题意得,两个相似多边形的一组对应边的比为3:4.5=,∴它们的相似比为,故选A.4、C【分析】根据顶点在线段上移动,又知点、的坐标分别为、,再根据平行于轴,之间距离不变,点的横坐标的最大值为,分别求出对称轴过点和时的情况,即可判断出点横坐标的最小值.【详解】根据题意知,点的横坐标的最大值为,此时对称轴过点,点的横坐标最大,此时的点坐标为,当对称轴过点时,点的横坐标最小,此时的点坐标为,点的坐标为,故点的横坐标的最小值为,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数的图象与性质.解答本题的关键是理解二次函数在平行于轴的直线上移动时,两交点之间的距离不变.5、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.7、C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.8、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.9、C【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【详解】∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,∴∠B=∠C=30°,故选C.10、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.11、D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A.打开电视正在播放新闻联播,是随机事件,不符合题意;B.某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C.抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D.若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D.【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、B【解析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.二、填空题(每题4分,共24分)13、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.14、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.15、【分析】根据题意延长交于点,则,延长交于点,根据已知可以得到CC´,B´C´,BF,B´F;求出,∵△MEC´∽△BEC,得到求出CE即可.【详解】Rt△ABC绕着点顺时针旋转得到,.又.如图,延长交于点,则,延长交于点,则.,,即,解得,∵△MEC´∽△BEC,,,解得∴CE=CC´+EC´=3+=【点睛】此题主要考查了旋转变化的性质和特征,相似三角形的性质,熟记性质是解题的关键,注意相似三角形的选择.16、±1或0【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2-bx+9的顶点在坐标轴上,所以分两种情况列式求解即可.【详解】解:∵,,∴顶点坐标为(,),当抛物线y=x2-bx+9的顶点在x轴上时,=0,解得b=±1.当抛物线y=x2-bx+9的顶点在y轴上时,=0,解得b=0,故答案为:±1或0【点睛】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.17、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.18、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子,∴射中靶子的频率为=0.9,∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.20、(1),;(2)当足球飞行的时间s时,足球离地面最高,最大高度是4.5m;(3)能.【分析】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a,c的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x=28代入x=10t得t=2.8,把t=2.8代入解析式求出y的值和2.44m比较大小即可得到结论.【详解】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,故答案为:﹣,;(2)∵y=﹣t2+5t+,∴y=﹣(t﹣)2+,∴当t=时,y最大=4.5,∴当足球飞行的时间s时,足球离地面最高,最大高度是4.5m;(3)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.21、(1),顶点坐标为;(2),,【分析】(1)利用配方法将二次函数的一般式转化为顶点式,从而求出抛物线的顶点坐标;(2)将y=0代入解析式中即可求出结论.【详解】解:(1),顶点坐标为;(2)将y=0代入解析式中,得解得:∴抛物线与轴的交点坐标为,,【点睛】此题考查的是求抛物线的顶点坐标和求抛物线与x轴的交点坐标,掌握将二次函数的一般式转化为顶点式和一元二次方程的解法是解决此题的关键.22、(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23、(1)见解析;(2)⊙O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中数学第2课时++用计算器进行运算课件+北师大版七年级数学上册
- 人教版八年级物理上册 第四章《光的反射》分层作业练习题
- 收银员高级工练习题库及参考答案
- 重庆介绍课件
- 老年人穿衣训练课件
- 老年人的家庭护理课件
- 《英语语法2》课程介绍与教学大纲
- 老年人春节防护知识培训课件
- 老年人急救知识培训内容课件
- 己亥杂诗课件
- 征兵心理测试题及答案
- 高温中暑急救教学
- 妇科临床科室管理制度
- 直销团队文化课件
- 广西南宁市三中2025届高三第二次模拟考试英语试卷含解析
- 五年级体育课教案全集
- 新审计法知识讲解课件
- 幼儿教育幼儿园安全知识教育试题
- 哮喘患儿自我管理指导
- 2022学年上海复旦附中高一(上)期末信息技术试题及答案
- 数学思维与问题解决能力-深度研究
评论
0/150
提交评论