




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列几组数中,能组成直角三角形的是()A. B. C. D.2.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①② B.①③ C.②③ D.②④3.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.84.下列各数中,()是无理数.A.1 B.-2 C. D.1.45.如图,在一个三角形的纸片()中,,将这个纸片沿直线剪去一个角后变成一个四边形,则图中的度数为()A.180° B.90 C.270° D.315°6.如图,矩形的对角线与相交于点分别为的中点,,则对角线的长等于()A. B. C. D.7.在式子,,,中,分式的个数是()A.1 B.2 C.3 D.48.下列图形中,是轴对称图形的是()A. B. C. D.9.在平面直角坐标系中,点(3,-4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC11.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,E在BC的延长线上,连接AE,∠E=2∠CAD,下列结论:①AD⊥BC;②∠E=∠BAC;③CE=2CD;④AE=BE.其中正确的个数是()A.1个 B.2个 C.3个 D.4个12.计算的结果是()A. B. C.a-b D.a+b二、填空题(每题4分,共24分)13.一个正方形的边长增加2cm,它的面积就增加24cm,这个正方形的边长是______cm.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为_____.15.用反证法证明“是无理数”时,第一步应先假设:____________________________________________.16.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.17.解关于x的方程产生增根,则常数m的值等于________.18.如图,依据尺规作图的痕迹,计算∠α=________°.三、解答题(共78分)19.(8分)尺规作图:如图,要在公路旁修建一个货物中转站,分别向、两个开发区运货.(1)若要求货站到、两个开发区的距离相等,那么货站应建在那里?(2)若要求货站到、两个开发区的距离和最小,那么货站应建在那里?(分别在图上找出点,并保留作图痕迹.)20.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.21.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.22.(10分)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm-3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.23.(10分)已知,在平行四边形ABCD中,BD=BC,E为AD边的中点,连接BE;(1)如图1,若AD⊥BD,,求平行四边形ABCD的面积;(2)如图2,连接AC,将△ABC沿BC翻折得到△FBC,延长EB与FC交于点G,求证:∠BGC=∠ADB.24.(10分)如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.25.(12分)解不等式组:;并将解集在数轴上表示出来.26.2018年,某县为改善环境,方便居民出行,进行了路面硬化,计划经过几个月使城区路面硬化面积新增400万平方米.工程开始后,实际每个月路面硬化面积是原计划的2倍,这样可提前5个月完成任务.(1)求实际每个月路面硬化面积为多少万平方米?(2)工程开始2个月后,随着冬季来临,气温下降,县委、县政府决定继续加快路面硬化速度,要求余下工程不超过2个月完成,那么实际平均每个月路面硬化面积至少还要增加多少万平方米?
参考答案一、选择题(每题4分,共48分)1、C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;B、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;C、,以为三边的三角形能组成直角三角形,故本选项符合题意;D、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,熟记勾股定理的逆定理的内容以及正确计算是解题的关键.2、A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.3、A【详解】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.4、C【解析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,逐一判定即可.【详解】A选项,1是有理数,不符合题意;B选项,-2是有理数,不符合题意;C选项,是无理数,符合题意;D选项,1.4是有理数,不符合题意;故选:C.【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.5、C【分析】根据直角三角形与邻补角的性质即可求解.【详解】∵∴∴===故选C.【点睛】此题主要考查三角形的求解求解,解题的关键是熟知直角三角形与邻补角的性质.6、C【分析】根据中位线的性质可得OD=2PQ=5,再根据矩形对角线互相平分且相等,可得AC=BD=2OD=1.【详解】∵P,Q分别为AO,AD的中点,∴PQ是△AOD的中位线∴OD=2PQ=5∵四边形ABCD为矩形∴AC=BD=2OD=1.故选C.【点睛】本题考查了三角形中位线,矩形的性质,熟记三角形的中位线等于第三边的一半,矩形对角线互相平分且相等是解题的关键.7、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,分母中均不含有字母,因此它们是整式,而不是分式.其余两个式子的分母中含有字母,因此是分式.故选:B.【点睛】本题考查了分式的定义,特别注意π不是字母,是常数,所以不是分式,是整式.8、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、是轴对称图形,故本选项符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、D【解析】试题分析:应先判断出点的横纵坐标的符号,进而判断点所在的象限.解:∵点的横坐标3>0,纵坐标﹣4<0,∴点P(3,﹣4)在第四象限.故选D.10、B【解析】试题分析:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),则还需添加的添加是OB=OC,故选B.考点:全等三角形的判定.11、C【分析】等腰三角形的性质,“三线合一”,顶角的平分线,底边的高和底边上的中线,三条线互相重合便可推得.【详解】解:①∵在△ABC中,AB=AC,D是BC的中点,∴AD⊥BC;②∵在△ABC中,AB=AC,D是BC的中点,∴∠BAC=2∠CAD,∵∠E=2∠CAD,∴∠E=∠BAC;③无法证明CE=2CD;④∵在中,AB=AC,∴∠B=∠ACB,∵∠ACB=∠E+∠CAE,∠E=∠BAC,∴∠B=∠EAB,∴AE=BE.【点睛】掌握等腰三角形“三线合一”为本题的关键.12、B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解:==故选B.【点睛】本题考查分式的混合运算.二、填空题(每题4分,共24分)13、a=1【解析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有
(a+2)2-a2=24,
(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,
解得a=1.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.14、2或4【解析】先求出点C坐标,然后分为两种情况,画出图形,根据等腰三角形的性质求出即可.【详解】∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2;如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为2或4.【点睛】本题考查了一次函数与二元一次方程组、等腰直角三角形等知识,综合性比较强,熟练掌握相关知识、运用分类讨论以及数形结合思想是解题的关键.15、是有理数【分析】根据反证法的证明步骤即可.【详解】解:第一步应先假设:是有理数故答案为:是有理数.【点睛】本题考查了反证法,解题的关键是熟知反证法的证明步骤.16、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.17、【分析】先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.【详解】两边同乘以得,由增根的定义得,将代入得,故答案为:.【点睛】本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.18、1.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】如图,∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAC=∠ACB=68°.
∵由作法可知,AF是∠DAC的平分线,
∴∠EAF=∠DAC=34°.
∵由作法可知,EF是线段AC的垂直平分线,
∴∠AEF=90°,
∴∠AFE=90°-34°=1°,
∴∠α=1°.
故答案为:1.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析.【分析】(1)要使货站到A、B两个开发区的距离相等,可连接AB,线段AB中垂线与MN的交点即为货站的位置;(2)由于两点之间线段最短,所以做点A作A’关于MN对称,连接BA’,与MN的交点即为货站的位置.【详解】(1)如图所示:(2)如图所示:【点睛】本题考查的是中垂线的性质与两点之间线段最短的知识,掌握中垂线的作图方法是以线段的两个端点为圆心,以大于二分之一线段的长度为半径,分别以线段两个端点为圆心画弧,连接两个交点即可,本题(2)中关键是通过中垂线找到点A的对称点(画图过程同(1),但需要从MN中任选两个点为线段端点,因为MN太长了,不方便作图),从而利用两点之间线段最短的的知识解答.20、(1)见解析;(2)2;(3)【分析】(1)△ABC关于y轴对称图形为△A1B1C1,根据轴对称的性质画出三个点的对称点再连接即可作出△A1B1C1;(2)用割补法求△ABC的面积即可;(3)P点在x轴上,当BP+CP最小时,即可求出BP+CP最小值.【详解】解:如图所示,(1)如图,△A1B1C1即为所求;(2)△ABC的面积为:;(3)作点B关于x轴的对称点B′,连接CB′交x轴于点P,此时BP+CP最小,BP+CP的最小值即为CB′=.故答案为.【点睛】本题结合网格图和平面直角坐标系考查了作已知图形的对称图形,割补法求三角形面积,简单的动点与最值问题,熟练掌握相关知识点是解答关键.21、(1)直拍球拍每副220元,横拍球每副260元;(2)购买直拍球拍30副,则购买横拍球10副时,费用最少.【解析】(1)设直拍球拍每副x元,根据题中的相等关系:20副直拍球拍的价钱+15副横拍球拍的价钱=9000元;10副横拍球拍价钱-5副直拍球拍价钱=1600元,建立方程组即可求解;(2)设购买直拍球拍m副,根据题意列出不等式可得出m的取值范围,再根据题意列出费用关于m的一次函数,并根据一次函数的性质解答即可.【详解】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40-m)副,由题意得,m≤3(40-m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40-m)=-40m+11200,∵-40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为-40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.点睛:本题主要考查二元一次方程组、不等式和一次函数的性质等知识点.在解题中要利用题中的相等关系和不等关系建立方程组和不等式,而难点在于要借助一次函数建立解决实际问题的模型并根据自变量的取值范围和一次函数的增减性作出决策.22、(1)m=18;(2)有3种购买方案,每月最多处理污水量的吨数为1880吨.【解析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;
(2)设买A型污水处理设备x台,B型则(10-x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值.【详解】(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,即可得:90m解得m=18,经检验m=18是原方程的解,即m=18,(2)设买A型污水处理设备x台,B型则(10-x)台,根据题意得:18x+15(10-x)≤156,解得x≤2,由于x是整数,则有3种方案,当x=0时,10-x=10,月处理污水量为1800吨,当x=1时,10-x=9,月处理污水量为220+180×9=1840吨,当x=2时,10-x=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.【点睛】本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的等量关系是解决问题的关键.23、(1)4;(2)证明见解析.【分析】(1)先推出∠ADB=90°,设AE=DE=a,则BD=AD=2a,根据勾股定理得出a2+4a2=5,解出a=1或﹣1(舍弃),可得AD=DB=2,即可求出S平行四边形ABCD;(2)延长BE到M,使得EM=BE,连接AM,先证明四边形ABDM是平行四边形,然后证明△BDM≌△CBF,得出∠DBM=∠BCF,根据AD∥BC,得出∠GBC=∠BED,根据∠BGC+∠GCB+∠GBC=180°,∠ADB+∠EBD+∠BED=180°,即可证明∠BGC=∠ADB.【详解】(1)解:∵四边形ABCD是平行四边形,∴AD=BC,∵BD=BC∴DA=DB,∵AD⊥BD,∴∠ADB=90°,设AE=DE=a,则BD=AD=2a,∵BE=,∴a2+4a2=5,∴a=1或﹣1(舍弃),∴AD=DB=2,∴S平行四边形ABCD=AD•BD=4;(2)证明:延长BE到M,使得EM=BE,连接AM,∵AE=DE,EM=EB,∴四边形ABDM是平行四边形,∴DM=AB,由翻折的性质可知:BA=BF,∠ABC=∠CBF,∴DM=BF,∵CD∥AB,∴∠ABC+∠DCB=180°,∴∠CBF+∠DCB=180°,∵BD=BC,∴∠DCB=∠CDB,∵∠BDM+∠CDB=180°,∴∠BDM=∠CBF,∴△BDM≌△CBF(SAS),∴∠DBM=∠BCF,∵AD∥BC,∴∠GBC=∠BED,∵∠BGC+∠GCB+∠GBC=180°,∠ADB+∠EBD+∠BED=180°,∴∠BGC=∠ADB.【点睛】本题考查了求平行四边形的面积,平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房地产行业住房租赁市场绿色租赁住房标准实施水平考核试卷
- 难点解析人教版八年级物理上册第5章透镜及其应用同步训练试题(详解版)
- 2025年儿童青少年近视防控资格证考试儿童青少年近视防控体育与健康课程融合考核试卷
- 考点解析人教版八年级物理上册第6章质量与密度-密度章节测试试题(解析卷)
- 难点解析人教版八年级物理上册第4章光现象专题练习试卷(含答案详解)
- 考点解析人教版八年级物理上册第5章透镜及其应用-眼睛和眼镜同步测试试卷(详解版)
- 第一次月考后九年级家长会上校长发言:迷雾与灯塔
- 知识型员工的激励研究-以银川隆基硅材料有限公司为例
- 关于拍婚纱合同(标准版)
- 装修承接合同(标准版)
- 抗菌药物的合理应用课件
- 2024新能源光伏电站竣工结算模板报表格式模板
- 《滨海湿地生态系统固碳量评估技术规程》
- 《现代汉语》课件-普通话的声调
- 混凝土结构设计原理-003-国开机考复习资料
- 华为ICT大赛网络赛道考试题库(786题)
- 第八届全国医药行业特有职业技能竞赛(中药调剂员)考试题及答案
- CSC-326系列数字式变压器保护装置说明书(SF4524)-V1331
- JTJ073.1-2001 公路水泥混凝土路面 养护技术规范
- 越剧《梁山伯与祝英台》剧本
- 菜鸟驿站转让合同范本
评论
0/150
提交评论