2022年山东省枣庄薛城区五校联考数学九年级第一学期期末综合测试模拟试题含解析_第1页
2022年山东省枣庄薛城区五校联考数学九年级第一学期期末综合测试模拟试题含解析_第2页
2022年山东省枣庄薛城区五校联考数学九年级第一学期期末综合测试模拟试题含解析_第3页
2022年山东省枣庄薛城区五校联考数学九年级第一学期期末综合测试模拟试题含解析_第4页
2022年山东省枣庄薛城区五校联考数学九年级第一学期期末综合测试模拟试题含解析_第5页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.2.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.3.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为54.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(

)A.8S B.9S C.10S D.11S5.方程的解是()A.0 B.3 C.0或–3 D.0或36.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个7.如图,平行于x轴的直线AC分别交函数y=x(x≥0)与y=x(x≥0)的图象于B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交y=x(x≥0)的图象于点E,则=()A. B.1 C. D.3﹣8.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A. B. C. D.9.对于二次函数y=﹣(x﹣2)2﹣3,下列说法正确的是()A.当x>2时,y随x的增大而增大 B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣3) D.图象与x轴有两个交点10.方程是关于的一元二次方程,则的值不能是()A.0 B. C. D.11.下列选项的图形是中心对称图形的是()A. B. C. D.12.用配方法解方程,下列配方正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.14.小华在一次射击训练中的6次成绩(单位:环)分别为:9,8,9,10,8,8,则他这6次成绩的中位数比众数多__________环.15.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.16.方程(x-3)2=4的解是17.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.18.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.三、解答题(共78分)19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.20.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.21.(8分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.

(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.22.(10分)在正方形和等腰直角中,,是的中点,连接、.(1)如图1,当点在边上时,延长交于点.求证:;(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.23.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上;②直接写出∠BDC的度数(用含α的式子表示)为;(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC=2a,试写出此时BF的值.24.(10分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)25.(12分)如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.26.在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.①若点在直线上,则点的3倍相关圆的半径为________.②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.2、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°

∠BDO+∠BEO=180°

∴B、D、O、E四点共圆

∴∠DOE=180°−∠B=180°−50°=130°

又∵∠DFE是圆周角,∠DOE是圆心角

∠DFE=∠DOE=65°

故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.3、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.4、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.6、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.

∵△=12-4×2×3=-24<1,

∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;

当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,

∴抛物线y=2x2+3与两坐标轴的交点个数为1个.

故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.7、D【分析】设点A的纵坐标为b,可得点B的坐标为(,b),同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【详解】解:设点A的纵坐标为b,因为点B在的图象上,所以其横坐标满足=b,根据图象可知点B的坐标为(,b),同理可得点C的坐标为(,b),所以点D的横坐标为,因为点D在的图象上,故可得y==3b,所以点E的纵坐标为3b,因为点E在的图象上,=3b,因为点E在第一象限,可得E点坐标为(,3b),故DE==,AB=所以=故选D.【点睛】本题主要考查二次函数的图象与性质.8、D【分析】先根据一次函数的图象判断a、c的符号,再判断二次函数图象与实际是否相符,判断正误.【详解】解:A、由一次函数y=ax+c的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;

B、由一次函数y=ax+c的图象可得:a>0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向上,交于y轴的正半轴,错误;

C、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误.

D、由一次函数y=ax+c的图象可得:a<0,c>0,此时二次函数y=ax2+bx+c的图象应该开口向下,与一次函数的图象交于同一点,正确;

故选:D.【点睛】本题考查二次函数的图象,一次函数的图象,解题的关键是熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9、B【分析】根据二次函数的性质对进行判断;通过解方程﹣(x﹣2)2﹣3=0对D进行判断即可.【详解】∵二次函数y=﹣(x﹣2)2﹣3,∴当x>2时,y随x的增大而减小,故选项A错误;当x=2时,该函数取得最大值,最大值是﹣3,故选项B正确;图象的顶点坐标为(2,﹣3),故选项C错误;当y=0时,0=﹣(x﹣2)2﹣3,即,无解,故选项D错误;故选:B.【点睛】本题考查了二次函数的图象和性质,把求二次函数与轴的交点问题转化为解关于的一元二次方程问题可求得交点横坐标,牢记其的顶点坐标、对称轴及开口方向是解答本题的关键.10、C【详解】解:是关于的一元二次方程,则解得m≠故选C.【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.11、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查的是中心对称图形,理解中心对称图形的定义是判断这四个图形哪一个是中心对称图形的关键.12、D【分析】把方程两边都加上4,然后把方程左边写成完全平方形式即可.【详解】∵,∴,∴.故选:D.【点睛】本题考查了配方法解一元二次方程,解题时要注意解题步骤的正确应用.①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方得出即可.二、填空题(每题4分,共24分)13、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14、0.5【分析】根据中位数的定义和众数的定义,分别求出中位数和众数,然后作差即可.【详解】解:将这6次的成绩从小到大排列:8,8,8,9,9,10,故这6次的成绩的中位数为:(8+9)÷2=环根据众数的定义,这6次的成绩的众数为8环∴他这6次成绩的中位数比众数多-8=环故答案为:.【点睛】此题考查的是求一组数的中位数和众数,掌握中位数和众数的定义是解决此题的关键.15、2【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行线的性质和三角函数定义求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案为:2.【点睛】本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.16、1或1【解析】方程的左边是一个完全平方的形式,右边是4,两边直接开平方有x-3=±2,然后求出方程的两个根.解:(x-3)2=4x-3=±2x=3±2,∴x1=1,x2=1.故答案是:x1=1,x2=1.本题考查的是用直接开平方法解一元二次方程,方程的左边的一个完全平方的形式,右边是一个非负数,两边直接开平方,得到两个一元一次方程,求出方程的根.17、【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解.【详解】设AB所在直线的解析式为:y=kx+b,把(1.5,70)与(2,0)代入得:,解得:,∴AB所在直线的解析式为:y=-140x+280,令x=0,得到y=280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+60)千米,根据题意得:x+x+60=280,解得:x=110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,∴甲车的速度为85千米/时,乙车速度为55千米/时,根据题意得:280﹣55×(280÷85)=(千米).则快车到达乙地时,慢车与甲地相距千米.故答案为:【点睛】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB所在直线的解析式是解题的关键.18、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.三、解答题(共78分)19、(1)见解析;(2)OE=25【解析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据勾股定理得到BE=1,AC=45【详解】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形.(2)解:∵AE=4,AD=5,∴AB=5,BE=1.∵AB=BC=5,∴CE=2.∴AC=45∵对角线AC,BD交于点O,∴AO=CO=25∴OE=25【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理解直角三角形,正确的识别图形是解题的关键.20、(1)EF=2;(2)y=x(0≤x≤1);(3)满足条件的CN的值为或1.【分析】(1)在Rt△BEF中,利用勾股定理即可解决问题.(2)根据速度比相等构建关系式解决问题即可.(3)分两种情形如图3﹣1中,当MN∥DF,延长FE交DC的延长线于H.如图3﹣2中,当MN∥DE,分别利用平行线分线段成比例定理构建方程解决问题即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由题意:=,∴=,∴y=x(0≤x≤1).(3)如图3﹣1中,延长FE交DC的延长线于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=1,当MN∥DF时,=,∴=,∵y=x,解得x=,如图3﹣2中,当MN∥DE时,=,∴=,∵y=x,解得x=1,综上所述,满足条件的CN的值为或1.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21、(1);(2).【分析】(1)利用概率公式求解即可;(2)利用画树状图得出全部可能的情况,再找出符合题意的情况,即可得出所求概率.【详解】解:(1),∴抽到标有数字3的卡片的概率为;(2)解:用树状图列出所有可能出现结果:共有6种等可能结果,其中2种符合题意.∴(数字之和为负数)=.【点睛】本题考查的知识点是用树状图法求事件的概率,根据题意找出全部可能的情况,再找出符合题意的情况是解此题的关键.22、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.【分析】(1)利用已知条件易证,则有,,从而有,再利用直角三角形的斜边中线的性质即可得出结论;(2)由已知条件易证,由全等三角形的性质证明,最后利用直角三角形的斜边中线的性质即可得出结论;(3)由已知条件易证,由全等三角形的性质证明,最后利用等腰三角形的性质和特殊角的三角函数值即可求出答案.【详解】(1)证明:,又,(ASA),又,,在中,(2)成立,证明如下:延长到,使,连接、、.,,、、,,,在中,(3)论证过程中需要的辅助线如图所示证明:延长GP到点E,使,连接DE,CE,CG,∵∴∴∵为等边三角形∴∴∵∴∴∵∴∵∴又∵∴∴又∵∴∵∴∴∴【点睛】本题考查了正方形的性质,菱形的性质,全等三角形的判定及性质,直角三角形的性质,解直角三角形等知识,熟练掌握和灵活运用相关知识是解题的关键.23、(1)①详见解析;②α;(2)详见解析;(3)当B、O、F三点共线时BF最长,(+)a【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB,即可证点B,C,D在以点A为圆心,AB为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC,可求∠BDC的度数;(2)连接CE,由题意可证△ABC,△DCE是等边三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根据“SAS”可证△BCD≌△ACE,可得AE=BD;(3)取AC的中点O,连接OB,OF,BF,由三角形的三边关系可得,当点O,点B,点F三点共线时,BF最长,根据等腰直角三角形的性质和勾股定理可求,,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案为:α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵点O是AC中点,AC=2a,∴,∴,∴BH=3a,∴,∵点C关于直线l的对称点为点D,∴∠AFC=90°,∵点O是AC中点,∴,∴,∴当B、O、F三点共线时BF最长;最大值为(+)a.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.24、斜拉索顶端A点到海平面B点的距离AB约为93.7米.【分析】在Rt△ACD和Rt△BCD中,根据锐角三角函数求出AD、BD,即可求出AB.【详解】如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论