新疆生产建设兵团第二师二十七团中学2022-2023学年数学八上期末综合测试模拟试题含解析_第1页
新疆生产建设兵团第二师二十七团中学2022-2023学年数学八上期末综合测试模拟试题含解析_第2页
新疆生产建设兵团第二师二十七团中学2022-2023学年数学八上期末综合测试模拟试题含解析_第3页
新疆生产建设兵团第二师二十七团中学2022-2023学年数学八上期末综合测试模拟试题含解析_第4页
新疆生产建设兵团第二师二十七团中学2022-2023学年数学八上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多 B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人2.如图,在中,,,是的平分线,,垂足为,若,则的周长为()A.10 B.15 C.10 D.203.若分式有意义,则实数x的取值范围是()A.x=0 B.x=5 C.x≠5 D.x≠04.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是()A.旋转角是 B.C.若连接,则 D.四边形和四边形可能不全等5.如图,是的平分线,垂直平分交的延长线于点,若,则的度数为()A. B. C. D.6.关于的分式方程有整数解,关于的不等式组无解,所有满足条件的整数的和为()A.2 B.-6 C.-3 D.47.下列各式中计算正确的是()A. B. C. D.8.下列图形中,是轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个9.在,-1,,这四个数中,属于负无理数的是()A. B.-1 C. D.10.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°二、填空题(每小题3分,共24分)11.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.12.计算:______;13.若,则以、为边长的等腰三角形的周长为______.14.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.15.点,是直线上的两点,则_______0(填“>”或“<”).16.若分式方程有增根,则m=________.17.若最简二次根式与是同类二次根式,则a的值为________.18.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.三、解答题(共66分)19.(10分)分解因式:(1)a4-16(2)9(a+b)2-4(a-b)220.(6分)解方程:(1)(2)21.(6分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.22.(8分)如图,三个顶点的坐标分别为.(1)请画出关于轴对称的,并写出的坐标;(2)在轴上求作一点,使的周长最小,并直接写出点的坐标.23.(8分)如图,台风过后,旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆在离地面6米处折断,请你求出旗杆原来的高度?24.(8分)如图,OC平分∠AOB,OA=OB,PD⊥AC于点D,PE⊥BC于点E,求证:PD=PE.25.(10分)如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?26.(10分)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、C【分析】根据勾股定理即可求出AB,然后根据角平分线的性质和定义DC=DE,∠CAD=∠EAD,利用直角三角形的性质即可求出∠ADC=∠ADE,再根据角平分线的性质可得AE=AC,从而求出BE,即可求出的周长.【详解】解:∵在中,,,∴AB=∵是的平分线,∴DC=DE,∠CAD=∠EAD,∠DEA=90°∴∠ADC=90°-∠CAD=90°-∠EAD=∠ADE即DA平分∠CDE∴AE=AC=10cm∴BE=AB-AE=∴的周长=DE+DB+BE=DC+DB+BE=BC+BE=10+故选C.【点睛】此题考查的是勾股定理、角平分线的性质和直角三角形的性质,掌握用勾股定理解直角三角形、角平分线的性质和直角三角形的两个锐角互余是解决此题的关键.3、C【解析】根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x﹣1≠0,解得x≠1.故选:C.【点睛】本题主要考查分式有意义的条件:分母不为零,掌握分式有意义的条件是解题的关键.4、C【分析】根据旋转的旋转及特点即可依次判断.【详解】旋转角是或,故A错误;,故B错误;若连接,即对应点与旋转中心的连接的线段,故则,C正确;四边形和四边形一定全等,故D错误;故选C.【点睛】此题主要考查旋转的性质,解题的关键是熟知旋转的特点与性质.5、C【分析】由线段的垂直平分线性质可得AF=FD,根据等边对等角得到∠FAD=∠FDA,由角平分线的性质和外角性质可得结论.【详解】∵EF垂直平分AD,∴AF=FD,∴∠FAD=∠FDA,∴∠FAC+∠CAD=∠B+∠DAB.∵AD是∠BAC的平分线,∴∠CAD=∠DAB,∴∠FAC=∠B=65°.故选:C.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,三角形外角性质,灵活运用这些性质是解答本题的关键.6、A【分析】求出分式方程的解,由分式方程有整数解,得到整数a的取值;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的和.【详解】分式方程去分母得:1-ax+4(x-3)=﹣5,解得:x=,∵x≠3,∴≠3,解得:a≠1.由分式方程的解为整数,且a为整数,得到4-a=±1,±1,±3,±6,解得:a=3,5,1,6,7,1,2,-1.∵a≠1,∴a=-1,1,3,5,6,7,2.解不等式组,得到:.∵不等式组无解,∴,解得:a≤3.∴满足条件的整数a的值为﹣1,1,3,∴整数a之和是-1+1+3=1.故选:A.【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.7、D【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、,此选项错误错误,不符合题意;B、,此选项错误错误,不符合题意;C、,此选项错误错误,不符合题意;D、,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.8、C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:第一个不是轴对称图形;第二个是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;故是轴对称图形的个数是3个.故选C.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、D【分析】根据小于零的无理数是负无理数,可得答案.【详解】解:是负无理数,

故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10、C【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=∠ACE,∠2=∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=∠A=25°.故选C.二、填空题(每小题3分,共24分)11、【分析】根据•BC•AH=•AB•AC,可得AH=,根据AD•BO=BD•AH,得OB=,再根据BE=2OB=,运用勾股定理可得EC.【详解】设BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得:BC=,∵点D是BC的中点,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,∵DE=DB=CD,∴∠DBE=∠DEB,∠DEC=∠DCE,∴∠DEB+∠DEC=×180°=90°,即:∠BEC=90°,∴在Rt△BCE中,EC==.故答案为:.【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.12、-4【分析】先把拆解成,再进行同指数幂运算即可.【详解】原式=故填:-4.【点睛】本题考查幂的运算:当指数相同的数相乘,指数不变数字相乘.采用简便方法计算是快速计算的关键.13、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.【详解】∵,∴a-3=0,7-b=0,解得a=3,b=7①若a=3是腰长,则底边为7,三角形的三边分别为3、3、7,∵3+3<7,∴3、3、7不能组成三角形。②若b=7是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17.∴以、为边长的等腰三角形的周长为17.【点睛】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.14、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.15、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【点睛】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.16、-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.17、4【解析】根据最简二次根式及同类二次根式的定义列方程求解.【详解】∵最简二次根式与是同类二次根式,∴2a−3=5,解得:a=4.故答案为4.【点睛】考查最简二次根式与同类二次根式的概念,化为最简后被开方数相同的根式称为同类二次根式,18、89.1【分析】根据加权平均数公式计算即可:(其中w1、w2、……、wn分别为x1、x2、……、xn的权.).【详解】小明的数学期末成绩是=89.1(分),故答案为89.1.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.三、解答题(共66分)19、(1)(x2+4)(x+2)(x-2);(2)(5a+b)(a+5b)【分析】(1)利用平方差公式分解即可;(2)利用平方差公式分解即可;【详解】解:(1)a4-16=(x2+4)(x2-4)=(x2+4)(x+2)(x-2);(2)9(a+b)2-4(a-b)2==(5a+b)(a+5b)【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.20、(1);(2)【分析】(1)把①×3+②消去y,求出x的值,再把x的值代入①求出y的值即可;(2)用②-①消去x,求出y的值,,再把y的值代入②求出x的值即可.【详解】(1),①×3+②,得10x=20,∴x=2,把x=2代入①,得6+y=7,∴y=1,∴;(2),②-①,得,y=-3,把y的值代入②,得x-6=-5,x=1,∴.【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.21、(1)证明见解析;(2)112.5°.【分析】根据同角的余角相等可得到结合条件,再加上可证得结论;

根据得到根据等腰三角形的性质得到由平角的定义得到【详解】证明:在△ABC和△DEC中,,(2)∵∠ACD=90°,AC=CD,∴∠1=∠D=45°,∵AE=AC,∴∠3=∠5=67.5°,∴∠DEC=180°-∠5=112.5°.22、(1)见解析;A1(1,1)、B1(4,2)、C1(3,4);(2)见解析;P点坐标为(﹣2,0).【分析】(1)先在坐标系中分别画出点A,B,C关于y轴的对称点,再连线,得到,进而写出、、的坐标即可;(2)先画出点B关于x轴的对称点B′,再连接B′A交x轴于点P,即为所求.【详解】(1)如图所示:△A1B1C1,即为所求,A1、B1、C1的坐标分别为A1(1,1)、B1(4,2)、C1(3,4);(2)如图所示,画出点B关于x轴的对称点B′,连接B′A交x轴于点P,此时的值最小,即△PAB的周长最小,此时P点坐标为:(﹣2,0).【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,通过点的轴对称,求两线段和的最小值,是解题的关键.23、16米【分析】利用勾股定理求出AB,即可得到旗杆原来的高度.【详解】由题可知AC⊥BC,AC=6米,BC=8米,∴在Rt△ABC中,由勾股定理可知:,∴AB=10.则旗杆原来的高度为10+6=16米.【点睛】此题考查勾股定理的实际应用,实际问题中构建直角三角形,将所求的问题转化为勾股定理解答是解题的关键.24、详见解析.【解析】根据OC平分∠AOB,得到∠AOC=∠BOC,证得△AOC≌△BOC,根据全等三角形的性质得到∠ACO=∠BCO,根据角平分线的性质即可得到结论.【详解】∵OC平分∠AOB,∴∠AOC=∠BOC.在△AOC和△BOC中,∵OC=OC,∠AOC=∠BOC,OA=OB,∴△AOC≌△BOC(SAS),∴∠ACO=∠BCO.又∵PD⊥AC,PE⊥BC,∴PD=PE.【点睛】本题考查了全等三角形的判定和性质,角平分线的定义和性质,熟练掌握全等三角形的判定定理是解题的关键.25、(1)全等;(2)不相等,当点的运动速度为时,能使与全等.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;

(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【详解】解:(1)全等.理由如下:中,,,由题意可知,,经过1秒后,,,,在和中,,;(2)设点的运动速度为,经过与全等,则可知,,,,根据全等三角形的判定定理可知,有两种情况:①当,时,且,解得,,,∴舍去此情况;②当,时,且,解得,,故若点与点的运动速度不相等,则当点的运动速度为时,能使与全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.26、(1)见解析(2)见解析(3)2∠G=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论