




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
?计算机科学导论?课件Unit16InternetofThings,CloudComputingandDataScience216-1Introduction16-2OpportunitiesinIoT,Cloud,andDataScience16-3ChallengesandResearchDirections16-4IoTApplications16-5CloudApplicationServiceModels16-6CloudApplicationDeploymentModels16-7BigDataToolsandTechniques16-8IntegrationofIoT,CloudComputing,andBigData16-9ReferencesandRecommendedReading16-10KeyTerms16-11Summary16-12PracticeSet
OUTLINE5InternetofThingsFigure16.2EnablingtechnologiesofIoT
6CloudcomputingResourcesandservicesareabstractedfromtheunderlyinginfrastructure.Basedonservice-levelagreements(SLAs)andconsumers.Payonlyforwhattheyconsume.Offersvirtualizednetworkresources,ubiquitous(i.e.reliable/efficient/secure)andoptimalresourceutilization,scalability,compatibility,elasticity,on-demandresourcedelivery,resourcesharing,lowercosts,easeofuse,environmentalsustainability,andmanagementautomation7DatascienceThestudyandpracticeofextractingknowledgefromdataandfindingvaluableinsightsindatatohelpmakevaluabledecisions.Wayofextractingvaluableknowledgefrombigdata.Figure16.3Fieldsincorporatedintodatascience8DatascienceDatascientists:Visualizeandinterpretrichdatasets;Managelargebigdatasets;Ensureconsistencyofdatasets;Buildmathematicalmodelsofdatasets.Interdisciplinaryfieldthatincorporatestheoriesandmethodsfrommanyfieldswithinthebroadareasofstatistics,mathematics,informationscience,andcomputerscience.9DatascienceDatascienceandbigdatasometimesusedinterchangeably.Primarydifferenceistheirperspective.Datasciencebeginswiththedatause,whereasbigdatabeginswiththedatacharacteristics.Datascienceisintricatelyintertwinedwithbigdatatechnologies,anddata-drivendecision-making.1016.2 OpportunitiesinIoT,Cloud,andDataScience
OpportunitiesinIoTcreationofanewecosystembyintegratingthevirtualworldwiththephysicalworldcontextawarepartofoureverydayinfrastructure【根底设施】basedonreal-timedata11OpportunitiesinIoTExamplesofIoTsystemsorservices:useofsensorstotrackRFIDtagsplacedonproductssharedvideosurveillanceservice
tomonitorwaterlevelsinnearbyreservoirsRFID-taggedproductsandsmartshelvesequippedwithsensorssuchasmotionandweightdetectorsimplementationofMedicalBodyAreaNetwork(MBAN)tomonitorheartbeat,bloodpressure,temperatureetc.usingCCTVcamerasandfibreopticcablestomonitorreal-timetrafficconditionssmarttransportationsystems12OpportunitiesincloudcomputingSecurityEnergy-efficiency【能效性】IncreasedstorageCostsavingsReliability【可靠性】,fault-tolerance,anddisasterrecovery【灾难恢复】FlexibilityandeaseofuseRemoteaccess【用户接口】andimprovedmobilityAutomaticupdates13OpportunitiesindatascienceandbigdataDatascienceexploreinsightsfrombigdataAllowhiddenprinciplesanddeepcorrelationstobefoundMassiveglobaltransformationtowardsbetterlivingstandardsExamplesofhowbigdataanalyticsischangingthee-commercelandscape:Alibabagroup,AliPay,Alibaba, AliExpress【全球速卖通】,Tmall,Taobao【淘宝】, AliPay,WeChatPayment【微信支付】,and BaiduWallet【百度钱包】1416.3 ChallengesandResearchDirections
ChallengesandresearchdirectionsinIoTSecurityissuesTrustandprivacyIntegrationissuesScalability,datacontrolandsharingDatamanagementDataminingMachine-to-Machine(M2M)communicationsLackofsharedinfrastructureLackofcommonstandardsInteroperabilityMobilityissues15ChallengesandresearchdirectionsincloudcomputingCloudsecurityTransitiontothecloudCloudapplicationsQoS,servicedelivery,andbillingEnergy-efficiencyInteroperability【互操作性】16ChallengesandresearchdirectionsindatascienceDataminingisappliedtoperformactualextractionofknowledgefrombigdataandmachinelearningisappliedtodiscoverpatternsindatasets.Successfuldatascientistsmustbeabletoseeallproblemsintheperspectiveofbigdataanalytics.Adatascientistmustbeabletosystematicallyextractusefulknowledgefromdata.However,ithasbecomedifficultbecauseduetothedatadeluge,dataisnowstoredindifferentdatabases,orInternet.17ChallengesandresearchdirectionsindatascienceNext-generationsemanticdatainfrastructureSmartsearchAlgorithmsScalability,sparsity,andabductivemodelingHeterogeneity,incompleteness【不完全性】orredundancy【冗余】indatasetsSystemarchitecture18ChallengesandresearchdirectionsinbigdataHumancollaborationPrivacyDatadurability【数据持久性】DataavailabilityandstorageFaulttoleranceanddisasterrecoveryTransferissues1916-4IoTApplicationsFigure16.4PotentialIoTApplications2016.5CloudApplicationServiceModelsFigure16.5Clouddeliverytypes【云交付类型】2116.6CloudApplicationDeploymentModelsPrivatecloudServessingleorganization,businessorthelicenseeOrganizationisresponsibleforimplementationMoresecureExpensiveCommunitycloudServesmultipleorganizationswhichhavespecificsharedgoalsorrequirementsCommunitymembersorthird-partyserviceproviderisresponsibleforprovidingrequiredimplementationAffordableandsecure22CloudDeploymentModelsPubliccloudServesgeneralpublicovertheInternetCloudprovidersareresponsibleforprovidingservicesonpay-per-usebasisFlexible,scalable,easytouse,andinexpensivetodeploysecuritymustbewellprotectedHybridcloudCombinationofpublic,private,orcommunitycloudsSupportelasticity,scalability,interoperability,andportability【可移植性】onapplicationanddata2316.7BigDataToolsandTechniquesTheabilitytodesign,develop,andimplementabigdataapplicationisdirectlydependentontheknowledgeoftheunderlyingarchitectureofthecomputingplatform.Bigdataischaracterizedby4Vs:volume【容量】:largeamountofdatavelocity【速度】:speedofdatageneration,processing,transfer,andanalysisvariety【多样性】:heterogeneityindata
veracity【真实性】:levelofaccuracyinthedata24ApacheHadoopAnopen-sourcefundamentalframeworkwritteninJavafordistributedstorageanddistributedprocessingofverybigdatasetsoncomputerclusters【计算机集群】.PrimarycomponentsofApacheHadoop:MapReduceHDFS25ApacheHadoopTable16.1ThefunctionofHadoop’smaincomponentsNameFunctionMapReduceAparallelprocessingsystemoflargedatasets.Itdividescomputationsintotwodistinctsteps;inthefirststep,thelargerproblemisdividedintomanydiscreteindependentpieceswhicharefedtothemapfunctions;thisisfollowedbythereducefunction,joiningthemapresultsbackintoafinalproduct.HDFSAdistributedfilesystemthatprovideshigh-throughputaccesstoapplication.HBaseAscalable,distributeddatabasethatsupportsstructureddatastorageforlargetables.HiveAdatawarehouseinfrastructurethatprovidesadatabasequeryinterfacetoApacheHadoop.MahoutAsuiteofscalablemachinelearninganddatamininglibrary.PigAhigh-leveldata-flowlanguageandexecutionframeworkforparallelcomputation.AvroAdataserializationsystem.ZooKeeperAhigh-performancecoordinationservicefordistributedapplications.AmbariAweb-basedtoolforprovisioning,managing,andmonitoringApacheHadoopclusters.ChukwaAdatacollectionsystemformanaginglargedistributedsystems.StormAdistributedcomputationframework.DataisprocessedinrealtimeinStorm,whileitisbatchedinMapReduce.Additionally,aStormjobrunsindefinitelyuntilkilled,whileaMapReducejobmustendeventually.2616.8IntegrationofIoT,CloudComputing,andBigDataIoT,cloudcomputing,andbigdataareconjoined.Figure16.6Theemerginginfrastructureofsmarterplanet【智慧地球】27IntegrationofIoT,CloudComputing,andBigDataWiththerapidincreaseinthenumberofIoTdevices,theamountofbigdataproducedisalsoincreasing.Storingofsuchmassiveamountsofdataisnotpossiblewithtraditionalstoragemethodsonlocalservers.Cloudisthesolutionforstoring,processingandanalyzingbigdataproducedbyIoTdevicesandapplications.Ratherthanusinglocalstorageattachedtoanelectronicdeviceoracomputer,bigdatausesdistributedstoragetechnologybasedoncloudcomputing.28IntegrationofIoT,CloudComputing,andBigDataCloudprovidesservicesforthecomputation,andprocessingofbigdataproducedbyIoTapplicationsanddevices.Forexample,MapReduce
isusedfortheprocessingofbigdatainacloudenvironment,asitisdesignedfortheprocessingoflargeamountsofdatasetsstoredinparallelinthecluster.However,thereisascarcityoftoolsforbigdataprocessinginclouds.29ChallengesintheIntegrationofIoT,CloudComputing,andBigDataConcernsarisewhensomecriticalandsensitiveIoTapplicationsaremovedtothecloud.Therecanbeseveralreasons,forexample:lackoftrustintheserviceproviderlackofstrongSLAsphysicallocationofthedatabeingunknowntotheuserheterogeneousnatureofbigdatacomingfromdifferentdeviceshavingvariedplatforms,operatingsystems,architectures,andstandards30IntegrationofIoT,CloudComputing,andBigDataItisestimatedthat,inthenextfewyears,therewillbeamassiveincreaseinthenumberofconnectedIoTdevices.IoTwillbeoneofthemainsourcesofbigdata,andcloudwillenabletostoreitforlongtimeandtoperformcomplexanalysesonit.Everyday2.5quintillionbytesofdataarecreated.However,thereisnosingleperfectsolutiontomanagethebigdataoncloudsproducedbyalltheIoTdevicesMoreover,Security,privacyanddataintegrityareverycrucialfactorsforIoTdataonclouds.3116-9ReferencesandRecommendedReadingAcharjyaDP,DehuriSandSanyalS:ComputationalIntelligenceforBigDataAnalysis:FrontierAdvancesandApplications,Adaptation,Learning,andOptimization,Volume19,Springer,2021BessisNandDobreC:BigDataandInternetofThings:ARoadmapforSmartEnvironments,StudiesinComputationalIntelligence,Volume546,Springer,2021BorgiaE:TheInternetofThingsvision:Keyfeatures,applicationsandopenissues.ComputerCommunications,Volume54,1–31,2021ChenM,MaoS,ZhangYandLeungVCM:BigData:RelatedTechnologies,ChallengesandFutureProspects,SpringerBriefsinComputerScience,Springer,2021HassanienAE,AzarAT,SnaselV,KacprzykJandAbawajyJH:BigDatainComplexSystems:ChallengesandOpportunities,StudiesinBigData,Volume9,Springer,202132ReferencesandRecommendedReadingHurwitzJ,NugentA,HalperFandKaufmanM:BigDataForDummies,Hoboken,NJ:JohnWiley&Sons,2021JagadishHV:BigDataandScience:MythsandReality,BigDataResearch,2,49-52LiKC,JiangH,YangLTandCuzzocreaA:BigData:Algorithms,Analytics,andApplications,BigDataSeries,Chapman&Hall/CRC,2021LoshinD:BigDataAnalytics:FromStrategicPlanningtoEnterpriseIntegrationwithTools,Techniques,NoSQL,andGraph,Waltham,MA:Elsevier,2021MachirajuSandGauravS:HardeningAzureApplications,SurenMachirajuandSurajGaurav,202133ReferencesandRecommendedReadingMarinescuDC:CloudComputing:TheoryandPractice,Waltham,USA:Elsevier,2021SaidiAA,FleischerR,MaamarZandRanaOF:IntelligentCloudComputing,FirstInternationalConference,2021SmithIG:TheInternetofThings:2021NewHorizons,Halifax,USA:IERC,2021UnderdahlB:TheInternetofThingsForDummies,Hoboken,NJ:JohnWiley&Sons,2021VermesanOandFriessP:InternetofThings:ConvergingTechnologiesforSmartEnvironmentsandIntegratedEcosystems,RiverPublishers,20213416-10KeytermsApacheHadoopdatascientistMapReducebigdataEnablingtechnologiesofIoTPlatformasaService(PaaS)
cloudcomputingHadoopDistributedFileSystem(HDFS)privatecloudCloudserviceProvides(CSPs)hybridcloudpubliccloudcommunitycloudInfrastructureasaService(IaaS)sensorsCyber-PhysicalSystems(CPS)integrationofIoT,cloud,andbigdatasmartecosystemdatascienceInternetofThings(IoT)SoftwareasaService(SaaS)3516-11SummaryThetransformationfromdigitaltoreal-timeintelligencehasmadeIoT,cloud,anddatascienceindispensabletotheverynatureofwork.Thesetechnologieshaverevolutionizedourglobeandareconsideredascomplementaryastheyhaveenhancedeachothercapacitiesandcapabilities.IoT,sometimescalledInternetofEverything(IoE),representsaparadigminwhichanyphysicalthingcanbecomeacomputerthatisconnectedtoadynamicandself-configuringglobalnetwork.ThingsincludedinIoTaremuchmorethaneverydayobjects,vehicles,electronicequipment,smartphones,mobiledevices,utilitymeters,cameras,Bluetooth,Wi-Fi,Satellite,Ethernet,globalpositioningsystems(GPS),sensors,RFID,wirelesssensornetworks(WSNs),Machine-to-Machine(M2M)communication,2G/3G/4G/5G,IP,industrialsystems,agriculturalsystemsetc.ThetechnologiesthatmakeintelligentIoTapplicationspossibleareconsideredastheenablingtechnologiesofIoT.3616-11SummaryCloudcomputingisamodelinwhichInformationTechnology(IT)resourcesandservicesareabstractedfromtheunderlyinginfrastructureandaccessedondemandbythecustomersbasedonservice-levelagreements(SLAs)establishedthroughnegotiationsbetweenthecloudserviceproviders(CSPs)andconsumers.Thecloudservicecanbehostedon-siteoroff-sitesuchasTencentcloud,Alibaba’sAliyun,Xiaomi’sMiCloud,Apple’siCloud,Microsoft’sSkyDriveandSamsung’sS-Cloud.SomemajorcloudprovidersareAmazonWebServices(AWS),MicrosoftWindowsAzure,Rackspace,andBaiduCloud.Datascienceisthestudyandpracticeofextractingknowledgefromdataandfindingvaluableinsightsindatatohelpmakevaluabledecisions.Itisaninterdisciplinaryfieldthatincorporatestheoriesandmethodsfrommanyfieldswithinthebroadareasofstatistics,mathematics,computerscience,andinformationscience.3716-11SummaryIoTpresentsmanyopportunitiesandbringsaboutnewinnovations.ExamplesofsomeoftheIoTsystemsorservicesare:useofsensorstotrackRFIDtagsplacedonproducts,sharedvideosurveillancese
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年影像学放射影像解读技能检验答案及解析
- 机构编制发展新质生产力
- 2025年耳鼻喉科学科听力评估与康复模拟考试答案及解析
- 2025年骨科外伤急救操作技能测评模拟考试答案及解析
- 民族团结的课件
- 2025年耳鼻喉科术后护理观察考核答案及解析
- 公考面试新质生产力应答指南
- 2025年神经外科手术并发症管理综合能力考核答案及解析
- 产业链协同与新质生产力
- 有关同学聚会的活动策划方案(精创)
- 粮库业务知识培训课件
- 医师临床“三基”训练综合试卷(含答案)
- 2025至2030年中国综合能源服务市场竞争策略及行业投资潜力预测报告
- 土地要素保障课件教学
- 2025-2026粤教粤科版(2024)科学三年级上册教学设计(附目录)
- 《鸿蒙应用开发项目教程》全套教学课件
- 2025年陕西省中考数学试题卷(含答案详解)
- 2025年注册计量师考试计量器具管理与维护试卷
- 国内公司外汇管理办法
- 高中数学教师学情分析现状的调查研究
- 起重作业安全知识考核试题(含答案)
评论
0/150
提交评论