云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析_第1页
云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析_第2页
云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析_第3页
云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析_第4页
云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市安宁第四中学2021-2022学年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是

)..

..参考答案:A故选答案A2.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面 C.平行 D.垂直参考答案:A【考点】空间中直线与直线之间的位置关系.【分析】直线AB与直线外一点E确定的平面为A1BCD1,EF?平面A1BCD1,且两直线不平行,故两直线相交,可得结论.【解答】解:如图,在正方体AC1中:∵A1B∥D1C∴A1B与D1C可以确定平面A1BCD1,又∵EF?平面A1BCD1,且两直线不平行,∴直线A1B与直线EF的位置关系是相交,故选A.3.命题“,”的否定是(

)A.,

B.,C.,

D.,参考答案:B根据命题的否定易得:命题“,”的否定是,4.不等式x2﹣2x+m>0在R上恒成立的充分不必要条件是()A.m>2 B.0<m<1 C.m>0 D.m>1参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】不等式x2﹣2x+m>0化为:m>﹣x2+2x=﹣(x﹣1)2+1,利用二次函数的单调性、充分不必要条件即可得出.【解答】解:不等式x2﹣2x+m>0化为:m>﹣x2+2x=﹣(x﹣1)2+1,∵﹣(x﹣1)2+1≤1,∴m>1.∴不等式x2﹣2x+m>0在R上恒成立的充分不必要条件是m>2.故选:A.5.边长为a的正方体表面积为()A.6a2 B.4a2 C. D.参考答案:A【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】正方体的表面积由6个正方形的面积组成.所以正方体的表面积=6×正方形的面积S=6a2.【解答】解:依题意得:正方体的表面积=6×正方形的面积S=6a2.故选A.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3 B.20cm3 C.30cm3 D.40cm3参考答案:B【考点】由三视图求面积、体积.【分析】由三视图知几何体为直三削去一个三棱锥,画出其直观图,根据棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,计算三棱柱与三棱锥的体积,再求差可得答案.【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.若圆与圆相切,则的值为(

)A.

B.

C.

D.

参考答案:D8.函数的极大值与极小值之和为 A、

B、

C、

D、参考答案:A略9.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A. B. C. D.参考答案:D【考点】等可能事件的概率.【分析】由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P==,故选D.10.若tanα=3,则的值等于()A.2 B.3 C.4 D.6参考答案:D【考点】GS:二倍角的正弦;GK:弦切互化.【分析】利用两角和公式把原式的分母展开后化简,把tanα的值代入即可.【解答】解:==2tanα=6故选D二、填空题:本大题共7小题,每小题4分,共28分11.已知向量,,则k=

.参考答案:或略12.抛物线的准线方程为,则焦点坐标是

.参考答案:略13.若对区间D上的任意都有成立,则称为到在区间D上的“任性函数”,已知,若是到在上的“任性函数”,则的取值范围是 .参考答案:14.命题“”的否定是

.参考答案:15.是定义在上的奇函数,且,当时,,则不等式的解集为

参考答案:略16.函数的值域是

.参考答案:略17.一元二次不等式的解集为,则的最小值为.参考答案:【考点】一元二次不等式的解法.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】通过关于x的一元二次不等式ax2+2x+b>0的解集为,求出a,b的关系,利用基本不等式确定其最小值.【解答】解:一元二次不等式的解集为,说明x=﹣时,不等式对应的方程为0,可得b=,即ab=1,∵a>b,∴==(a﹣b)+≥2,当且仅当a﹣b=时取等号,∴则的最小值为2,故答案为:2.【点评】本题考查一元二次不等式的解法,考查转化思想,计算能力,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知定圆C:x2+(y﹣3)2=4,定直线m;x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,(1)当l与m垂直时,求出N点的坐标,并证明:l过圆心C;(2)当|PQ|=2时,求直线l的方程.参考答案:【考点】直线和圆的方程的应用.【分析】(1)运用两直线垂直的条件:斜率之积为﹣1,求得l的斜率,可得直线l的方程,联立直线m的方程,可得交点N,代入圆心,可得直线l过圆心;(2)由|PQ|=2得,圆心C到直线l的距离d=1,设直线l的方程为x﹣ny+1=0,求得n的值,可得直线l的方程.【解答】解:(1)因为l与m垂直,直线m:x+3y+6=0的斜率为﹣,所以直线l的斜率为3,所以l的方程为y﹣0=3(x+1),即3x﹣y+3=0.联立,解得,即有N(﹣,﹣),代入圆心(0,3),有0﹣3+3=0成立,所以直线l过圆心C(0,3).(2)由|PQ|=2得,圆心C到直线l的距离d=1,设直线l的方程为x﹣ny+1=0,则由d==1.解得n=0,或n=,所以直线l的方程为x+1=0或4x﹣3y+4=0.19.已知函数f(x)(x∈R),f′(x)存在,记g(x)=f′(x),且g′(x)也存在,g′(x)<0.(1)求证:f(x)≤f(x0)+f′(x0)(x﹣x0);(x0∈R)(2)设n),且λ1+λ2+…+λn=1,xi∈R(i=1,…,n)(n∈N+)求证:λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn)(3)已知a,f(a),f[f(a)],f{f[(f(a)]}是正项的等比数列,求证:f(a)=a.参考答案:【考点】数列的应用;导数的运算.【分析】(1)构造辅助函数?(x)=f(x)﹣f(x0)﹣f'(x0)(x﹣x0),求导,根据函数的单调性求得?(x)的极大值,?(x)≤?(x0)=0,即可得f(x)≤f(x0)+f'(x0)(x﹣x0);(2)由(1)可知,两边分别同乘以λ1,λ2,λ3,…λn,采用累加法,得λ1f(x1)+λ2f(x2)+…+λnf(xn)≤(λ1+λ2+…+λn)f(x0)+f'(x0)?[λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)],由λ1+λ2+…+λn=1,设x0=λ1x1+λ2x2+…+λnxn,则λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)=0,即可证明λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn);(3)分别求得f(a)=aq,f[f(a)]=aq2,f{f[f[f(a}}=aq3,λx1+(1﹣λ)x2=aq,f[λx1+(1﹣λ)x2]=f(aq)=f[f(a)]=aq2,可得:=f[λx1+(1﹣λ)x2],由n=2,λ1=λ,λ2=1﹣λ,即λf(x1)+(1﹣λ)f(x2)≤f[λx1+(1﹣λ)x2],当且仅当x1=x2时成立,即a=aq2?a=1,可得f(a)=a.【解答】解:(1)证明:设?(x)=f(x)﹣f(x0)﹣f'(x0)(x﹣x0),则?'(x)=f'(x)﹣f'(x0)∵g'(x)<0故g(x)=f'(x)为减函数,则x=x0为?(x)的极大值点.∵?(x)≤?(x0)=0,即f(x)≤f(x0)+f'(x0)(x﹣x0)(当且仅当在x=x0取到)(2)证明:由(1)可知:f(x1)≤f(x0)+f'(x0)(x1﹣x0),两边同乘以λ1得λ1f(x1)≤λ1f(x0)+λ1f'(x0)(x1﹣x0),λ2f(x2)≤λ2f(x0)+λ2f'(x0)(x2﹣x0),…λnf(xn)≤λnf(x0)+λnf'(x0)(xn﹣x0),上式各式相加,得λ1f(x1)+λ2f(x2)+…+λnf(xn)≤(λ1+λ2+…+λn)f(x0)+f'(x0)?[λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)],因为λ1+λ2+…+λn=1,设x0=λ1x1+λ2x2+…+λnxn,则λ1(x1﹣x0)+λ2(x2﹣x0)+…+λn(xn﹣x0)=0,由此,λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x1+λ2x2+…+λnxn))等号当且仅当在x1=x2=…=xn时成立,(3)证明:记公比为q,q>0,则f(a)=aq,f[f(a)]=aq2,f{f[f[f(a}}=aq3,取x1′=a,,λ=∈(0,1),则λx1+(1﹣λ)x2=aq,f[λx1+(1﹣λ)x2]=f(aq)=f[f(a)]=aq2,又∵λf(x1)+(1﹣λ)f(x2)=λf(a)+(1﹣λ)f(aq2),=λf(a)+(1﹣λ)f{f[f(a)]},=λaq+(1﹣λ)aq3,=aq3+λaq﹣λaq3,=aq3+λaq(1﹣q2),=aq3+aq(1﹣q2),=aq2,即aq3+λaq(1﹣q2)=aq2=f[λx1+(1﹣λ)x2],在(2)中取n=2,λ1=λ,λ2=1﹣λ,即λf(x1)+(1﹣λ)f(x2)≤f[λx1+(1﹣λ)x2],当且仅当x1=x2时成立,即a=aq2?q=1,∴f(a)=a.20.已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线上。(1)求a1和a2的值;

(2)求数列{an},{bn}的通项an和bn;(3)设cn=an·bn,求数列{cn}的前n项和Tn.参考答案:解:(1)∵an是Sn与2的等差中项

∴Sn=2an-2

∴a1=S1=2a1-2,解得a1=2

a1+a2=S2=2a2-2,解得a2=4

(2)∵Sn=2an-2,Sn-1=2an-1-2,又Sn—Sn-1=an,

∴an=2an-2an-1,

又an≠0,

∴,即数列{an}是等比数列

∵a1=2,∴an=2n

∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,

∴bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1,

(3)∵cn=(2n-1)2n

∴Tn=a1b1+a2b2+····anbn=1×2+3×22+5×23+····+(2n-1)2n,

∴2Tn=1×22+3×23+····+(2n-3)2n+(2n-1)2n+1

-Tn=1×2+(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论