2022-2023学年四川省达州市通川区数学九年级第一学期期末调研试题含解析_第1页
2022-2023学年四川省达州市通川区数学九年级第一学期期末调研试题含解析_第2页
2022-2023学年四川省达州市通川区数学九年级第一学期期末调研试题含解析_第3页
2022-2023学年四川省达州市通川区数学九年级第一学期期末调研试题含解析_第4页
2022-2023学年四川省达州市通川区数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.2.如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为()A.2 B. C. D.3.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m4.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.5.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个6.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°7.若2a=3b,则下列比列式正确的是()A. B. C. D.8.抛物线经过点与,若,则的最小值为()A.2 B. C.4 D.9.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°10.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定11.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:912.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π二、填空题(每题4分,共24分)13.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.14.一组数据:2,3,4,2,4的方差是___.15.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.16.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.17.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,若AP=1,那么线段PP′的长等于_____.18.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.三、解答题(共78分)19.(8分)用配方法解方程:20.(8分)解方程:21.(8分)如图,在中,,,夹边的长为6,求的面积.22.(10分)“垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有人,条形统计图中的值为;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.23.(10分)随着传统的石油、煤等自然资源逐渐消耗殆尽,风力、核能、水电等一批新能源被广泛使用.现在山顶的一块平地上建有一座风车,山的斜坡的坡度,长是100米,在山坡的坡底处测得风车顶端的仰角为,在山坡的坡顶处测得风车顶端的仰角为,请你计算风车的高度.(结果保留根号)24.(10分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.25.(12分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求的长;(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.26.解方程:.

参考答案一、选择题(每题4分,共48分)1、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.2、D【解析】取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.【详解】解:如图,取AO的中点Q,连接CQ,QD,OD,∵C为的三等分点,∴的度数为60°,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∵Q为OA的中点,∴CQ⊥OA,∠OCQ=30°,∴OQ=,由勾股定理可得,CQ=,∵D为AP的中点,∴OD⊥AP,∵Q为OA的中点,∴DQ=,∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为.故选D【点睛】本题考查利用弧与圆心角的关系及垂径定理求相关线段的长度,并且考查线段最大值问题,利用圆的综合性质是解答此题的关键.3、C【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x米,由题意得,,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.4、D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选D.【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.5、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.6、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.7、C【分析】根据比例的性质即可得到结论.【详解】解:∵2a=3b,∴故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知其变形.8、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【详解】将点A、B的坐标分别代入,得,,∵,∴,得:b,∴b的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.9、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.10、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【点睛】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.11、A【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.二、填空题(每题4分,共24分)13、(4,0).【分析】先把(1,0)代入y=x2-5x+m求出m得到抛物线解析式为y=x2-5x+4,然后解方程x2-5x+4=0得到抛物线与x轴的另一个交点的坐标.【详解】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以抛物线解析式为y=x2-5x+4,当y=0时,x2-5x+4=0,解得x1=1,x2=4,所以抛物线与x轴的另一个交点的坐标为(4,0).故答案为(4,0).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题.14、0.1【分析】根据方差的求法计算即可.【详解】平均数为,方差为:,故答案为:0.1.【点睛】本题主要考查方差,掌握方差的求法是解题的关键.15、y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为,∵所得的抛物线经过点(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函数的解析式为,故答案为.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。16、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,∴最大值为12+2×=12+.故答案为:12+.【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.17、.【解析】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴∠PAP′=∠BAC=90°,AP=AP′=1,∴PP′=.故答案为.18、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.三、解答题(共78分)19、x1=+1,x2=+1【分析】先把方程进行整理,然后利用配方法进行解方程,即可得到答案.【详解】解:∵,∴,∴,∴,∴x1=+1,x2=+1.【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握配方法进行解一元二次方程.20、(1),;(2)【分析】(1)先移项,再利用配方法求解即可.(2)合并同类项,再利用配方法求解即可.【详解】(1)解得,(2)解得【点睛】本题考查了一元二次方程的计算,掌握利用配方法求方程的解是解题的关键.21、△ABC的面积是.【分析】作CD⊥AB于点D,根据等腰直角三角形的性质求出CD和BD的长,再利用三角函数求出AD的长,最后用三角形的面积公式求解即可.【详解】如图,作CD⊥AB于点D.∵∠B=45°,CD⊥AB∴∠BCD=45°∵BC=6∴CD=在Rt△ACD中,∠ACD=75°﹣45°=30°∴∴∴∴△ABC的面积是.【点睛】本题考查了三角函数的应用以及三角形的面积,掌握特殊三角函数的值以及三角形的面积公式是解题的关键.22、(1)60,10;(2)96°;(3)【分析】(1)根据基本了解的人数和所占的百分比可求出总人数,m=总人数-非常了解的人数-基本了解的人数-了解很少的人数;(2)先求出“了解很少”所占总人数的百分比,再乘以360°即可;(3)采用列表法或树状图找到所有的情况,再从中找出所求的1名男生和1名女生的情况,再由概率等于所求情况数与总情况数之比来求解.【详解】(1)(2)“了解很少”所占总人数的百分比为所以所对的圆心角的度数为(3)由表格可知,共有12种结果,其中1名男生和1名女生的有8种可能,所以恰好抽到1名男生1名女生的概率为【点睛】本题主要考查了条形统计图,扇形统计图,根据图中信息解题,以及用列表法或树状图求概率,解题的关键是根据题意画出树状图或表格,再由概率等于所求情况与总情况之比求解,注意列表时要做到不重不漏.23、【分析】由斜坡BD的坡度可求∠DBC=30°,从而得到∠DBA=∠DAB=15°,所以AD=BD,然后在Rt△ADE中,利用∠ADE的正弦求解即可.【详解】∵斜坡BD的坡度,∴∠DBC=30°,又∵∠ABC=45°,∠ADE=60°,∴∠DBA=∠DAB=15°,∴AD=BD=100米.在Rt△ADE中,sin∠ADE=,∴AE=ADsin∠ADE=100sin60°=50(米).【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.24、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,

故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.25、(1)见解析;(2);(3)①r1=1,;②△BFF'与△DEF'的面积比为或【分析】(1)连结,证明,得出,则结论得证;(2)求出,,连结,则,由弧长公式可得出答案;(3)①如图3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论