2022年甘肃省平凉市泾川县九年级数学第一学期期末预测试题含解析_第1页
2022年甘肃省平凉市泾川县九年级数学第一学期期末预测试题含解析_第2页
2022年甘肃省平凉市泾川县九年级数学第一学期期末预测试题含解析_第3页
2022年甘肃省平凉市泾川县九年级数学第一学期期末预测试题含解析_第4页
2022年甘肃省平凉市泾川县九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,是的弦,半径于点,且的长是()A. B. C. D.2.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有()A.56 B.560 C.80 D.1503.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.4.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A. B. C. D.5.如图,过反比例函数(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()A.S1>S2 B.S1=S2 C.S1<S2 D.大小关系不能确定6.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.7.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A. B. C. D.8.抛物线向左平移1个单位,再向下平移2个单位,所得到的抛物线是()A. B. C. D.9.如图,是的直径,四边形内接于,若,则的周长为()A. B. C. D.10.抛物线y=﹣2x2经过平移得到y=﹣2(x+1)2﹣3,平移方法是()A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是()A.2 B. C. D.12.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.1二、填空题(每题4分,共24分)13.已知二次函数y=(x﹣2)2﹣3,当x<2时,y随x的增大而_____(填“增大”或“减小”).14.如图示,半圆的直径,,是半圆上的三等分点,点是的中点,则阴影部分面积等于______.15.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.16.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.17.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.18.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.三、解答题(共78分)19.(8分)已知关于的一元二次方程.(1)若此方程有两个实数根,求的最小整数值;(2)若此方程的两个实数根为,,且满足,求的值.20.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.21.(8分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式.22.(10分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.23.(10分)4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.24.(10分)画图并回答问题:(1)在网格图中,画出函数与的图像;(2)直接写出不等式的解集.25.(12分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)26.如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用勾股定理和垂径定理即可求解.【详解】∵,∴AD=4cm在Rt△AOD中,OA2=OD2+AD2,∴25=(5−DC)2+16,∴DC=2cm.故选:C.【点睛】主要考查了垂径定理的运用.垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.2、B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B.【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数样本容量.3、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,

∴sinA==,

故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.4、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:

∵圆的半径为4,

∴OB=OA=OC=4,

又四边形OABC是菱形,

∴OB⊥AC,OD=OB=2,

在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,

∴S菱形ABCO=,∴S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=.5、B【分析】根据反比例函数的几何意义,直接求出S1、S1的值即可进行比较.【详解】由于A、B均在反比例函数的图象上,且AC⊥x轴,BD⊥x轴,则S1=;S1=.故S1=S1.故选:B.【点睛】此题考查了反比例函数k的几何意义,找到相关三角形,求出k的绝对值的一半即为三角形的面积.6、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.7、B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.8、B【分析】根据“左加右减、上加下减”的平移规律即可解答.【详解】解:抛物线向左平移1个单位,再向下平移2个单位,所得到的抛物线是,故答案为:B.【点睛】本题考查了抛物线的平移,解题的关键是熟知“左加右减、上加下减”的平移规律.9、C【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【详解】解:如图,连接OC、OD.∵AB是⊙O的直径,四边形ABCD内接于⊙O,BC=CD=DA=4,∴弧AD=弧CD=弧BC,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4,∴⊙O的周长=2×4π=8π.故选:C.【点睛】本题考查了圆心角、弧、弦的关系,等边三角形的判定与性质.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等,即四者有一个相等,则其它三个都相等..10、A【分析】由抛物线y=−2x2得到顶点坐标为(0,0),而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),根据顶点坐标的变化寻找平移方法.【详解】根据抛物线y=−2x2得到顶点坐标为(0,0),而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),∴平移方法为:向左平移1个单位,再向下平移3个单位.故选:A.【点睛】本题主要考查了抛物线的平移,熟练掌握相关概念是解题关键.11、D【分析】首先过点B作BD⊥AC于点D,设BC=a,根据直线解析式得到点A、B坐标,从而求出OA、OB的长,易证△BCD≌△ACO,再根据相似三角形的对应边成比例得出比例式,即可解答.【详解】解:过点B作BD⊥AC于点D,设BC=a,∵直线与轴、轴分别交于点、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以点C的纵坐标是.故选:D.【点睛】本题考查相似三角形的判定与性质、角平分线的性质的综合运用,解题关键是恰当作辅助线利用角平分线的性质.12、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;

又由于函数图象位于一、三象限,则k=4.

故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.二、填空题(每题4分,共24分)13、减小【分析】根据题目的函数解析式和二次函数的性质,可以得到当x<2时,y随x的增大如何变化,本题得以解决.【详解】∵二次函数y=(x﹣2)2﹣3,∴抛物线开口向上,对称轴为:x=2,∴当x>2时,y随x的增大而增大,x<2时,y随x的增大而减小,故答案为:减小.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.14、【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD、CD,如图所示:∵△COD和△CDE等底等高,∴S△COD=S△ECD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD=.故答案为.【点睛】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.15、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.16、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.18、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.三、解答题(共78分)19、(1)-4;(2)【分析】(1)根据题意利用判别式的意义进行分析,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)由题意利用根与系数的关系得到,,进而再利用,接着解关于m的方程确定m的值.【详解】解:(1)方程有两个实数根,即的最小整数值为.(2)由根与系数的关系得:,由得:,.【点睛】本题考查根与系数的关系以及根的判别式,注意掌握若,是一元二次方程的两根时,则有.20、(1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.21、(1)见解析;(2)抛物线的解析式为y=﹣x2+x+1.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(1,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+x+1.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.22、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;

(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.23、(1);(2).【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是,故答案为:(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为=.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.24、(1)画图见解析;(2)x<-1或x>3【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)在图象中代表着抛物线在直线上方的图象∴解集是x<-1或x>3【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论