2022年甘肃省平凉市庄浪县九年级数学第一学期期末复习检测模拟试题含解析_第1页
2022年甘肃省平凉市庄浪县九年级数学第一学期期末复习检测模拟试题含解析_第2页
2022年甘肃省平凉市庄浪县九年级数学第一学期期末复习检测模拟试题含解析_第3页
2022年甘肃省平凉市庄浪县九年级数学第一学期期末复习检测模拟试题含解析_第4页
2022年甘肃省平凉市庄浪县九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,将绕点按逆时针方向旋转后得到,若,则的度数是()A. B. C. D.2.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2) B.图象位于第二、四象限C.若x<﹣2,则0<y<3 D.在每一个象限内,y随x值的增大而减小4.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为()A. B.C. D.5.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.6.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是()A.-8 B.-10 C.-16 D.-187.下列函数中是反比例函数的是()A. B. C. D.8.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称10.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④11.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长 B.逐渐变短C.长度不变 D.先变短后变长12.已知,若,则它们的周长之比是()A.4:9 B.16:81C.9:4 D.2:3二、填空题(每题4分,共24分)13.二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有__________.14.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x,则可列方程_________.15.如图,四边形是半圆的内接四边形,是直径,.若,则的度数为______.16.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.17.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.18.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.三、解答题(共78分)19.(8分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.20.(8分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.21.(8分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.22.(10分)如图,已知一次函数的图象交反比例函数的图象于点和点,交轴于点.(1)求这两个函数的表达式;(2)求的面积;(3)请直接写出不等式的解集.23.(10分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.(1)求证:;(2)若,,求的长.24.(10分)用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?25.(12分)A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.26.(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.

①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据绕点按逆时针方向旋转后得到,可得,然后根据可以求出的度数.【详解】∵绕点按逆时针方向旋转后得到∴又∵∴【点睛】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.2、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.3、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【点睛】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.4、D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.5、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.6、D【分析】根据不等式组的解集的情况,得出关于m的不等式,求得m的取值范围,再解分式方程得出x,根据x是非负整数,得出m所有值的和.【详解】解:∵关于的不等式组有解,则,∴,又∵分式方程有非负整数解,∴为非负整数,∵,∴-10,-6,-2由,故答案选D.【点睛】本题考查含参数的不等式组及含参数的分式方程,能够准确解出不等式组及方程是解题的关键.7、B【分析】由题意直接根据反比例函数的定义对下列选项进行判定即可.【详解】解:根据反比例函数的定义可知是反比例函数,,是一次函数,,是二次函数,都要排除.故选:B.【点睛】本题考查反比例函数的定义,注意掌握反比例函数解析式的一般形式,也可以转化为的形式.8、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.9、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.11、A【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【详解】当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点睛】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯之间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.12、A【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,AC:DF=4:9,

∴△ABC与△DEF的相似比为4:9,

∴△ABC与△DEF的周长之比为4:9,

故选:A.【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.二、填空题(每题4分,共24分)13、①②④【分析】①由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为,得到b<0,可以①进行分析判断;

②由对称轴为,得到2a=b,b-2a=0,可以②进行分析判断;

③对称轴为x=-1,图象过点(-4,0),得到图象与x轴另一个交点(2,0),可对③进行分析判断;

④抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,

∴a<0,

∵与y轴的交点在y轴的正半轴上,

∴c>0,

∵对称轴为<0

∴b<0,

∴abc>0,故①正确;

②∵对称轴为,∴2a=b,

∴2a-b=0,故②正确;

③∵对称轴为x=-1,图象过点A(-4,0),

∴图象与x轴另一个交点(2,0),

∴关于x的一元二次方程ax2+bx+c=0的解为x=-4或x=2,故③错误;

④∵抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),

∴当y>0时,-4<x<2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.14、【分析】设平均每次降价的百分率为x,根据“一件商品的标价为108元,经过两次降价后的销售价是72元”即可列出方程.【详解】解:设平均每次降价的百分率为x,根据题意可得:,故答案为:.【点睛】本题考查一元二次方程的实际应用,理解题意,找出等量关系是解题的关键.15、50【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB是直径∴∴故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键.16、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】∵,.∴∴∵和的面积分别为和∴∵和等高∴∴同理可得∴阴影部分的面积为故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.17、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..18、【解析】根据概率的概念,由符合条件的人数除以样本容量,可得P(在日常生活中进行垃圾分类)==.故答案为.三、解答题(共78分)19、(1)①(6,),②(3,);(2)【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE=,∴OE=OA-AE=6-3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②(3,3);(2)①当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,∴,∴EF=此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x)∴.当3<x≤5时,如图AQ=OIIOOA=x36=x3AH=(x3)S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣∴.③当5<x≤9时,如图∵CE∥DP∴∴∴S=(BE+OA)•OC=(12﹣)∴.④当x>9时,如图∵AH∥PI∴∴∴S=OA•AH=.综上:.【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.20、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据∠BAC=70°,画一个140°的圆心角,与∠BAC同弧即可;(2)在劣弧BC上任意取一点P画一个∠BPC即可得110°的圆周角;(3)过点C画一条直径CD,连接AD即可画一个20°的圆周角.【详解】(1)如图1所示:∠BOC=2∠BAC=140°∴∠BOC即为140°的圆心角;(2)如图2所示:∠BPC=180°-∠BAC=110°,∴∠BPC即为110°的圆周角;(3)连接CO并延长交圆于点D,连接AD,∵∠DAC=90°,∴∠BAD=90°-∠BAC=20°∴则∠BAD即为20°的圆周角.【点睛】此题主要考查圆的基本性质,解题的关键是熟知圆周角定理的性质.21、(1)点A在该反比例函数的图像上,见解析;(2)Q的横坐标是;(3)见解析.【分析】(1)连接PC,过点P作轴于点H,由此可求得点P的坐标为(2,);即可求得反比例函数的解析式为,连接AC,过点B作于点C,求得点A的坐标,由此即可判定点A是否在该反比例函数的图象上;(2)过点Q作轴于点M,设,则,由此可得点Q的坐标为,根据反比例函数图象上点的性质可得,解方程球队的b值,即可求得点Q的横坐标;(3)连接AP,,,结合(1)中的条件,将正六边形ABCDEF先向右平移1个单位,再向上平移个单位(平移后的点B、C在反比例函数的图象上)或将正六边形ABCDEF向左平移2个单位(平移后的点E、F在反比例函数的图象上).【详解】解:(1)连接PC,过点P作轴于点H,在正六边形ABCDEF中,点B在y轴上和都是含有角的直角三角形,,点P的坐标为反比例函数的表达式为连接AC,过点B作于点C,,点A的坐标为当时,所以点A在该反比例函数的图像上(2)过点Q作轴于点M六边形ABCDEF是正六边形,设,则点Q的坐标为解得,点Q的横坐标是(3)连接AP,,平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF向左平移2个单位【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标相结合是解决问题的关系.22、(1)y=x﹣6;(2)△AOB的面积为6;(3)由图象知,0<x<2或x>1.【分析】(1)先把点A的坐标代入反比例函数表达式,从而的反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可;

(2)根据三角形的面积公式计算即可;(3)观察函数图象即可求出不等式的解集.【详解】(1)把A(2,﹣1)的坐标代入,得,∴1﹣2m=﹣8,反比例函数的表达式是y=﹣;把B(n,﹣2)的坐标代入y=﹣得,-2=﹣,解得:n=1,∴B点坐标为(1,﹣2),把A(2,﹣1)、B(1,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×1﹣×6×2=6;(3)由图象知,0<x<2或x>1.【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.23、(1)见解析;(2)【分析】(1)利用圆周角定理得到∠ACB=90°,再根据切线的性质得∠ABD=90°,则∠BAD+∠D=90°,然后利用等量代换证明∠BED=∠D,从而判断BD=BE;(2)利用圆周角定理得到∠AFB=90°,则根据等腰三角形的性质DF=EF=2,再证明,列比例式求出AD的长,然后计算AD-DE即可.【详解】(1)证明:∵是的直径,∴,∴.∵,∴.∵是的切线,∴,∴.又∵平分,∴,∴,∴;(2)解:∵是的直径,∴,又∵,∴.在中,根据勾股定理得,.∵,,∴,∴,即,解得,∴.【点睛】本题考查了圆周角定理、等腰三角形的判定与性质和相似三角形的判定与性质、切线的性质.熟练掌握切线的性质和相似三角形的判定与性质是解答本题的关键.24、当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【分析】根据矩形的面积公式甲图列出算式可以直接求面积,乙图设垂直于墙的一边为x,则另一边为(18﹣x)(包括墙长)列出二次函数解析式即可求解.【详解】解:如图甲:设矩形的面积为S,则S=8×(18﹣8)=2.所以当菜园的长、宽分别为10m、8m时,面积为2;如图乙:设垂直于墙的一边长为xm,则另一边为(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因为﹣1<0,当x=9时,S有最大值为81,所以当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.综上:当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论