2022年广东省深圳市南山外国语学校数学九上期末质量检测模拟试题含解析_第1页
2022年广东省深圳市南山外国语学校数学九上期末质量检测模拟试题含解析_第2页
2022年广东省深圳市南山外国语学校数学九上期末质量检测模拟试题含解析_第3页
2022年广东省深圳市南山外国语学校数学九上期末质量检测模拟试题含解析_第4页
2022年广东省深圳市南山外国语学校数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A. B. C. D.2.下列各数中,属于无理数的是()A. B. C. D.3.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.4.用配方法将二次函数化为的形式为()A. B.C. D.5.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上 B.对称轴是y轴C.有最低点 D.在对称轴右侧的部分从左往右是下降的6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B.C. D.7.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切8.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88° B.92° C.106° D.136°9.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是()A.90° B.100° C.110° D.130°10.计算:x(1﹣)÷的结果是()A. B.x+1 C. D.二、填空题(每小题3分,共24分)11.若2是一元二次方程x2+mx﹣4m=0的一个根,则另一个根是_________.12.如图所示,已知中,,边上的高,为上一点,,交于点,交于点,设点到边的距离为.则的面积关于的函数图象大致为__________.13.若关于x的一元二次方程2x2-x+m=0有两个相等的实数根,则m的值为__________.14.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.15.方程(x-3)2=4的解是16.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.17.一元二次方程(x﹣1)2=1的解是_____.18.方程的两根为,,则=.三、解答题(共66分)19.(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.20.(6分)如图1,▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F.(1)求证:四边形EBFD是平行四边形;(2)如图2,小明在完成(1)的证明后继续进行了探索.连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程.21.(6分)关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若满足,求的值.22.(8分)如图,矩形中,.为边上一动点(不与重合),过点作交直线于.(1)求证:;(2)当为中点时,恰好为的中点,求的值.23.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.24.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,且与反比例函数在第一象限的图象交于点,轴于点,.(1)求点的坐标;(2)动点在轴上,轴交反比例函数的图象于点.若,求点的坐标.25.(10分)如图3,小明用一张边长为的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为的正方形,再折成如图3所示的无盖纸盒,记它的容积为.(3)关于的函数表达式是__________,自变量的取值范围是___________.(3)为探究随的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:33.533.533.53333.533.53.53②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过,估计正方形边长的取值范围.(保留一位小数)26.(10分)已知,是一元二次方程的两个实数根,且,抛物线的图象经过点,,如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与轴的另一个交点为,抛物线的顶点为,试求出点,的坐标,并判断的形状;(3)点是直线上的一个动点(点不与点和点重合),过点作轴的垂线,交抛物线于点,点在直线上,距离点为个单位长度,设点的横坐标为,的面积为,求出与之间的函数关系式.

参考答案一、选择题(每小题3分,共30分)1、B【分析】如图(见解析),先根据圆的性质、直角三角形的性质可得,再根据等边三角形的判定与性质可得,然后根据直角三角形的性质、勾股定理可得,从而可得的面积,最后利用扇形BAD的面积减去的面积即可得.【详解】如图,连接BD,由题意得:,点D是斜边AC上的中点,,,是等边三角形,,,在中,,又是的中线,,则弧AD与线段AD围成的弓形面积为,故选:B.【点睛】本题考查了扇形的面积公式、等边三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造等边三角形和扇形是解题关键.2、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;

B、=2,是有理数,故本选项错误;

C、0,是有理数,故本选项错误;

D、1,是有理数,故本选项错误;

故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.3、C【分析】连接BD得到∠ADB是直角,再利用两三角形相似对应边成比例即可求解.【详解】连接BD,由AB是直径得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选C.4、B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【详解】故选:B.【点睛】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.5、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x)2+,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=,故选项B错误;当x=时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.6、B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选B.【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.7、D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.8、D【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数【详解】由圆周角定理可得∠BAD=∠BOD=44°,根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D.考点:圆周角定理;圆内接四边形对角互补.9、C【解析】根据三角形内角和定理以及圆内接四边形的性质即可解决问题;【详解】解:∵AB是直径,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故选C.【点睛】本题考查圆内接四边形的性质、三角形的内角和定理、圆周角定理等知识,解题的关键是熟练掌握基本知识.10、C【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式==.故选:C.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.二、填空题(每小题3分,共24分)11、-4【分析】将x=2代入方程求出m的值,再解一元二次方程求出方程的另一个根.【详解】解:将x=2代入方程得,,解得,∴一元二次方程为解方程得:∴方程得另一个根为-4故答案为:-4.【点睛】本题考查的知识点是解一元二次方程,属于基础题目,比较容易掌握.12、抛物线y=-x2+6x.(0<x<6)的部分.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴该函数图象是抛物线y=-x2+6x.(0<x<6)的部分.故答案为:抛物线y=-x2+6x.(0<x<6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.13、【解析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=,故答案为:.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.14、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.15、1或1【解析】方程的左边是一个完全平方的形式,右边是4,两边直接开平方有x-3=±2,然后求出方程的两个根.解:(x-3)2=4x-3=±2x=3±2,∴x1=1,x2=1.故答案是:x1=1,x2=1.本题考查的是用直接开平方法解一元二次方程,方程的左边的一个完全平方的形式,右边是一个非负数,两边直接开平方,得到两个一元一次方程,求出方程的根.16、【分析】根据频率的定义先求出黑球的个数,即可知红球个数.【详解】解:黑球个数为:,红球个数:.故答案为6【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键.17、x=2或0【分析】根据一元二次方程的解法即可求出答案.【详解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案为:x=2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p⩾0)的一元二次方程可采用直接开平方的方法解一元二次方程.18、.【解析】试题分析:∵方程的两根为,,∴,,∴===.故答案为.考点:根与系数的关系.三、解答题(共66分)19、6.4m【分析】由CD∥EF∥AB得可以得到△CDF∽△ABF,△ABG∽△EFG,故,,证,进一步得,求出BD,再得;【详解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴∴BD=9,BF=9+3=12∴解得,AB=6.4m因此,路灯杆AB的高度6.4m.【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.20、(1)证明见解析;(2)证明见解析【解析】(1)由平行四边形的性质得出AD∥BC,∠ABC=∠ADC.AD=BC,由角平分线得出∠ABE=∠EBC=∠ADF=∠CDF.证出EB∥DF,即可得出结论;(2)由平行四边形的性质得出BE∥DF,DE=BF,得出AE=CF,证出四边形AFCE是平行四边形,得出GF∥EH,即可证出四边形EGFH是平行四边形.【详解】证明:在ABCD中,AD∥BC,∠ABC=∠ADC.AD=BC.∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=∠ADC.∵∠ABC=∠ADC.∴∠ABE=∠EBC=∠ADF=∠CDF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.∵ED∥BF,∴四边形EBFD是平行四边形.(2)①补全思路:GF∥EH,AE∥CF;②理由如下:∵四边形EBFD是平行四边形;∴BE∥DF,DE=BF,∴AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴GF∥EH,∴四边形EGFH是平行四边形.【点睛】此题主要考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证明EB∥DF和四边形AFCE是平行四边形,是解决问题的关键.21、(1);(2)a=-1【分析】(1)方程有两个不相等的实数根,即为方程根的判别式大于0,由此可得关于a的不等式,解不等式即可求出结果;(2)根据一元二次方程的根与系数的关系可得关于a的方程,解方程即可求出a的值,再结合(1)的结论取舍即可.【详解】解:(1)∵方程有两个不相等的实数根,∴,解得:,∴的取值范围为:;(2)∵是方程的两个根,∴,,∵,∴,∴,解得:,∵,∴.【点睛】本题考查了一元二次方程的根的判别式、根与系数的关系和一元二次方程的解法,属于常考题型,熟练掌握上述知识是解题关键.22、(1)见解析;(2)的值为.【分析】(1)根据矩形的性质可得,根据余角的性质可得,进而可得结论;(2)根据题意可得BP、CP、CE的值,然后根据(1)中相似三角形的性质可得关于m的方程,解方程即得结果.【详解】解:(1)证明:四边形是矩形,,,,,,∴∽;(2)为中点,为的中点,且,,,,∵∽,,即,解得:,即的值为.【点睛】本题考查了矩形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握基本知识是解题关键.23、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.24、(1);(2)或【分析】(1)根据反比例函数表达式求出点C坐标,再利用“待定系数法”求出一次函数表达式,从而求出坐标;(2)根据“P在轴上,轴交反比例函数的图象于点”及k的几何意义可求出△POQ的面积,从而求得△PAC的面积,利用面积求出点P坐标即可.【详解】解:(1)∵轴于点,,∴点C的横坐标为2,把代入反比例函数,得,∴,设直线的解析式为,把,代入,得,解得,∴直线的解析式为,令,解得,∴;(2)∵轴,点在反比例函数的图象上,∴,∵,∴,∴,∴,由(1)知,∴或.【点睛】本题考查一次函数与反比例函数的综合应用,要熟练掌握“待定系数法”求表达式及反比例函数中k的几何意义,在利用面积求坐标时要注意多种情况.25、(3),;(3)①36,8;②见解析;③见解析;(3)(或)【分析】(3)先根据已知条件用含x的式子表示出长方体底面边长,再乘以长方体的高即可;

(3)①根据(3)得出的关系式求当x=3、3时对应的y的值补充表格;②③根据描点法画出函数图像即可;(3)根据图像知y=33时,x的值由两个,再估算x的值,再根据图像由y>33,得出x的取值范围即可.【详解】解:(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论