




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A.3cm B.4cm C.5cm D.6cm2.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤3.一元二次方程x2+4x=﹣3用配方法变形正确的是()A.(x﹣2)=1 B.(x+2)=1 C.(x﹣2)=﹣1 D.(x+2)=﹣14.如图所示,在矩形ABCD中,点F是BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.105.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.6.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣17.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.38.下列命题中,属于真命题的是()A.对角线互相垂直的四边形是平行四边形 B.对角线互相垂直平行的四边形是菱形C.对角线互相垂直且相等的四边形是矩形 D.对角线互相平分且相等的四边形是正方形9.用配方法解一元二次方程,配方后的方程是()A. B. C. D.10.如图,弦和相交于内一点,则下列结论成立的是()A.B.C.D.11.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=40°,则∠BAD的大小为()A.60º B.30º C.45º D.50º12.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)二、填空题(每题4分,共24分)13.如图,点,,,在上,,,,则________.14.抛物线y=(x-2)2+3的顶点坐标是______.15.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.16.进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.17.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.18.如图,AB为⊙O的直径,C、D为⊙O上的点,弧AD=弧CD.若∠CAB=40°,则∠CAD=_____.三、解答题(共78分)19.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.20.(8分)长城汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)21.(8分)中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,(1)求证:FE=AE;(2)填空:=__________(3)若,求的值(用含k的代数式表示).22.(10分)如图,在下列(边长为1)的网格中,已知的三个顶点,,在格点上,请分别按不同要求在网格中描出一个点,并写出点的坐标.(1)经过,,三点有一条抛物线,请在图1中描出点,使点落在格点上,同时也落在这条抛物线上;则点的坐标为______;(2)经过,,三点有一个圆,请用无刻度的直尺在图2中画出圆心;则点的坐标为______.23.(10分)如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,CD=3,求AE的长.24.(10分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)25.(12分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣126.如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,随的增大而________,常数的取值范围是________;(2)若此反比例函数的图象经过点,求的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据题意可知,若使点A在⊙O内,则点A到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系2、A【分析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).3、B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故选:B.【点睛】本题考查解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4、C【解析】由矩形的性质得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA证明△BEF≌△CDF,得出BE=CD=AB,则AE=2AB=2CD,再根据AOECOD,面积比等于相似比的平方即可。【详解】∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F为BC的中点,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故选:C.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握有关的性质与判定是解决问题的关键.5、D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6、B【解析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.7、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:
∵AB=BC,
∴,
∴OB⊥AC,
∴OB平分∠ABC,
∴∠ABO=∠ABC=×120°=60°,
∵OA=OB,
∴∠OAB=60°,
∵AD为直径,
∴∠ABD=90°,
在Rt△ABD中,AB=AD=3,
∴BD=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.8、B【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案.【详解】解:A、对角线互相垂直的四边形是平行四边形,错误,不合题意B、对角线互相垂直的平行四边形是菱形,正确,是真命题;C、对角线互相平分且相等的四边形是矩形,本选项错误,不合题意;D、对角线互相平分且相等的四边形应是矩形,本选项错误,不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握特殊四边形的判定方法是解题关键.9、C【分析】先移项变形为,再将两边同时加4,即可把左边配成完全平方式,进而得到答案.【详解】∵∴∴∴故选C.【点睛】本题考查配方法解一元二次方程,熟练掌握配方法的解法步骤是解题的关键.10、C【分析】连接AC、BD,根据圆周角定理得出角相等,推出两三角形相似,根据相似三角形的性质推出即可.【详解】连接AC、BD,∵由圆周角定理得:∠A=∠D,∠C=∠B,∴△CAP∽△BDP,∴∴,所以只有选项C正确.故选C.【点睛】本题考查了相似三角形的判定与性质、圆周角定理,连接AC、BD利用圆周角定理是解题的关键.11、D【分析】把∠DAB归到三角形中,所以连结BD,利用同弧所对的圆周角相等,求出∠A的度数,AB为直径,由直径所对圆周角为直角,可知∠DAB与∠B互余即可.【详解】连结BD,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.【点睛】本题考查圆周角问题,关键利用同弧所对圆周角转化为三角形的内角,掌握直径所对圆周角为直角,会利用余角定义求角.12、C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.二、填空题(每题4分,共24分)13、70°【分析】根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.【详解】∵=,∴,∴,∵,∴.故答案为【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.14、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故答案为(2,3)【点睛】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.15、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度.【详解】根据题意有∴设抛物线的表达式为将A,B,D代入得解得∴当时,故答案为:.【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.16、55,3.【解析】试题分析:设售价为元,总利润为元,则,∴时,获得最大利润为3元.故答案为55,3.考点:3.二次函数的性质;3.二次函数的应用.17、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.18、25°【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵弧AD=弧CD∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.【点睛】本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.三、解答题(共78分)19、(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理20、(1)当0≤x≤5时,y=30;当5<x≤30时,y=﹣0.1x+30.5;(2)该月需售出15辆汽车.【解析】试题分析:(1)根据分段函数可以表示出当时由销售数量与进价的关系就可以得出结论;
(2)由销售利润=销售价-进价,由(1)的解析式建立方程就可以求出结论.试题解析:(1)由题意,得当时y=30.当时,y=30−0.1(x−5)=−0.1x+30.5.∴(2)当时,(32−30)×5=10<25,不符合题意,当时,[32−(−0.1x+30.5)]x=45,解得:(不合题意舍去).答:该月需售出15辆汽车.21、(1)证明见解析;(2);(3).【分析】(1)由得,由∠AGH=∠ECH=90°可得∠DAC=∠BEF,由轴对称的性质得到∠DAC=∠EAC,从而可得∠BEF=∠EAC,利用三角形外角的性质得到,即可得到结论成立;(2)过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,先证明,得到BF=AM,再利用等腰直角三角形的性质和矩形的性质得到,DE=2CE=2AN,即可得到答案;(3)先利用相似三角形的判定证明,得到,从而得到,再证明,即可得到.【详解】(1)证明:∵,,∵垂足为点,,∵,,∵,,∵,,在和中,,,,,,∵,,,;(2)如图,过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,∵∠ACB=90°,AC=BC,∴∠B=45°,∵EM⊥BE,∴∠M=∠B=45°,由(1)已证:,,即,在和中,,∴,∴BF=AM,∵AN⊥ME,∠M=45°,∴是等腰直角三角形,∴AN=MN,AM=,易知四边形ACEN是矩形,∴CE=AN=MN,∵DE=2CE=2AN,∴,故答案为:;(3)∵,,,∵,由(1)知,,由(1)知,,,设,,则,,,,,,∵,,,.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的外角性质,全等三角形的判定和性质,以及等角对等边等性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题,注意角度之间的相互转换.22、(1);(2)答案见解析,.【分析】(1)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,即可求解;(2)AC中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心E为:(,).【详解】解:(1)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,
故点D(3,2),
故答案为:(3,2);(2)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心E为:(,).作图如下:【点睛】本题考查的是二次函数综合运用,圆的基本性质,创新作图,求出圆心的坐标是解题的关键.23、(1)见解析;(2)2【分析】(1)由∠AED=∠C=90°以及∠A=∠A公共角,从而求证△ABC∽△ADE;(2)由△ABC∽△ADE,可知,代入条件求解即可.【详解】(1)证明:∵DE⊥AB于点E,∴∠AED=∠C=90°.∵∠A=∠A,∴△ABC∽△ADE.(2)解:∵AC=8,BC=6,∴AB=1.∵△ABC∽△ADE,∴.∴AE=2.【点睛】本题考查相似三角形的综合问题,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等难度题型.24、(1)详见解析;(2)详见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动教育体验课件
- 景区标牌改造方案
- 食堂分餐规划方案
- 玉米生产考试题及答案
- 塑胶工程面试题及答案
- 企业常用面试题及答案
- 清新区桥梁拆除方案
- 2026版《全品高考》选考复习方案生物949 课时作业(四十五) 生态系统的能量流动含答案
- 水利管道开挖方案
- 奇葩语文面试题及答案
- 纳豆红曲胶囊
- 《户外探险》课件
- 《老年人出院准备服务指南》
- 2025年畜禽屠宰及加工企业组织结构及部门职责
- 《工艺流程培训》课件
- 颈椎前路手术麻醉
- 第一单元 第1课《互联网发展靠创新》说课稿2024-2025学年人教版(2024)初中信息科技七年级上册
- 公司项目提成奖励制度
- 集成电路产品供应链分析
- DB11T 1430-2017 古树名木雷电防护技术规范
- 电气专业知识
评论
0/150
提交评论