




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是()A.1 B.2 C.3 D.42.两个连续奇数的积为323,求这两个数.若设较小的奇数为,则根据题意列出的方程正确的是()A. B.C. D.3.如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是;④方程有一个实根大于;⑤当时,随增大而增大.其中结论正确的个数是()A.个 B.个 C.个 D.个4.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45° B.75° C.105° D.120°5.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB6.一元二次方程x2﹣2x+3=0的一次项和常数项分别是()A.2和3 B.﹣2和3 C.﹣2x和3 D.2x和37.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣18.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.9.如图,正方形中,点、分别在边,上,与交于点.若,,则的长为()A. B. C. D.10.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50° B.55° C.65° D.75°11.如图,,若,则的长是()A.4 B.6 C.8 D.1012.下列函数中,当x>0时,y随x的增大而增大的是()A.B.C.D.二、填空题(每题4分,共24分)13.抛物线y=(x+2)2+1的顶点坐标为_____.14.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为_____.15.中,如果锐角满足,则_________度16.抛物线(a>0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a的取值范围是____.17.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.18.如图,⊙O与抛物线交于两点,且,则⊙O的半径等于_______.三、解答题(共78分)19.(8分)如图,点D在以AB为直径的⊙O上,AD平分,,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:.20.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)21.(8分)如图,在中,,为边上的中点,交于点,.(1)求的值;(2)若,求的值.22.(10分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?23.(10分)如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.(1)求证;(2)当时,求AE的长;(3)当时,求AG的长.24.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.25.(12分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.26.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【分析】①对称轴为,得;②函数图象与x轴有两个不同的交点,得;③当时,,当时,,得;④由对称性可知时对应的y值与时对应的y值相等,当时【详解】解:由图象可知,对称轴为,,,①正确;∵函数图象与x轴有两个不同的交点,,②正确;当时,,当时,,③正确;由对称性可知时对应的y值与时对应的y值相等,∴当时,④错误;故选A.【点睛】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.2、B【分析】根据连续奇数的关系用x表示出另一个奇数,然后根据乘积列方程即可.【详解】解:根据题意:另一个奇数为:x+2∴故选B.【点睛】此题考查的是一元二次方程的应用,掌握数字之间的关系是解决此题的关键.3、A【解析】根据二次函数的图象与性质进行解答即可.【详解】解:∵抛物线开口方向向下∴a<0又∵对称轴x=1∴∴b=-2a>0又∵当x=0时,可得c=3∴abc<0,故①正确;∵b=-2a>0,∴y=ax2-2ax+c当x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②错误;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正确;∵对称轴x=1,与x轴的左交点的横坐标小于0∴函数图像与x轴的右交点的横坐标大于2∴的另一解大于2,故④正确;由函数图像可得,当时,随增大而增大,故⑤正确;故答案为A.【点睛】本题考查二次函数的图象与性质,熟练运用二次函数的基本知识和正确运用数形结合思想是解答本题的关键.4、C【解析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-=0,-cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C.【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.5、D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.6、C【分析】根据一元二次方程一次项和常数项的概念即可得出答案.【详解】一元二次方程x2﹣2x+3=0的一次项是﹣2x,常数项是3故选:C.【点睛】本题主要考查一元二次方程的一次项与常数项,注意在求一元二次方程的二次项,一次项,常数项时,需要先把一元二次方程化成一般形式.7、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.8、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】根据正方形的性质以及勾股定理求得,证明,根据全等三角形的性质可得,继而根据,可求得CG的长,进而根据即可求得答案.【详解】∵四边形ABCD是正方形,,∴,,∵,∴,∴,在和中,,∴,∴,∵,,∴,,∴,故选A.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.10、C【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O为BD的中点,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.11、C【解析】根据相似三角形对应边成比例即可求解.【详解】∵△EFO∽△GHO∴∴EF=2GH=8故选:C.【点睛】本题考查了相似三角形的性质,找到对应边建立比例式是解题的关键.12、B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A、,一次函数,k<0,故y随着x增大而减小,错误;B、(x>0),故当图象在对称轴右侧,y随着x的增大而增大,正确;C、,k=1>0,分别在一、.三象限里,y随x的增大而减小,错误;D、(x>0),故当图象在对称轴右侧,y随着x的增大而减小,错误.故选B.【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.二、填空题(每题4分,共24分)13、(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.14、1【分析】先证明△ABC∽△EDC,然后利用相似比计算CE的长.【详解】解:∵AB∥DE,∴△ABC∽△EDC,∴,即,∴CE=1.故答案为1【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活应用相似三角形相似的性质进行几何计算.也考查了解直角三角形.15、【分析】根据绝对值与偶数次幂的非负性,可得且,进而求出∠A,∠B的值,即可得到答案.【详解】∵,∴且,∴且,∴∠A=45°,∠B=30°,∵在中,,∴105°.故答案是:105°.【点睛】本题主要考查绝对值与偶数次幂的非负性,特殊三角函数以及三角形内角和定理,掌握绝对值与偶数次幂的非负性,是解题的关键.16、0<a<3.【解析】试题解析:∵二次函数的图象与坐标轴分别交于点(0,−3)、(−1,0),∴c=−3,a−b+c=0,即b=a−3,∵顶点在第四象限,又∵a>0,∴b<0,∴b=a−3<0,即a<3,故故答案为点睛:二次函数的顶点坐标为:17、【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.18、【分析】连接OA,AB与y轴交于点C,根据AB=2,可得出点A,B的横坐标分别为−1,1.再代入抛物线即可得出点A,B的坐标,再根据勾股定理得出⊙O的半径.【详解】连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为−1,1.∵⊙O与抛物线交于A,B两点,∴点A,B的坐标分别为(−1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.故答案为:.【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的纵坐标是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【解析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;
(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD,∵AD平分,∴,∵,∴,∴,∴,∵,∴,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴,∵,∴,∵,∴,∴,∴.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.20、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21、(1)(2)【分析】(1)根据题意证出∠B=∠ADE,进而设出DE和AD的值,再结合勾股定理求出AE的值即可得出答案;(2)根据斜中定理求出AD和AB的值,结合∠B和∠AED的sin值求出AC和AE的值,相减即可得出答案.【详解】(1)∵,∴.又∵,∴.设,则.在中,,则.(2)∵为斜边上的中点,∴,∴.则,,∴.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.22、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元【分析】(1)根据每天的利润=单件的利润×销售数量列出方程,然后解方程即可;(2)根据每天的利润=单件的利润×销售数量表示出每天的销售利润,再利用二次函数的性质求最大值即可.【详解】(1)由题意得,即,解得:,∵物价部门要求每件不得高于60元,∴,即时每天的利润是1350元;(2)由题意得:,∵抛物线开口向下,对称轴为,在对称轴左侧,随的增大而增大,且,∴当时,(元),当时,售价为(元),∴单价为60元时,每天利润最大,最大利润是1600元.【点睛】本题主要考查一元二次方程和二次函数的应用,掌握一元二次方程的解法和二次函数的性质是解题的关键.23、(1)见解析;(2);(3)【分析】(1)先证明P、C、F共线,由余角的性质可证,根据等角对等边证明,再由余角的性质证明和等角对等边证明,结论可证;(2)过A作于M,由勾股定理可求BC=4,然后求出MP的长,再由勾股定理求出AP的长,由是等腰直角三角形可求出AE的长;(3)通过证明,可得,由外角的性质可求出∠PAF=F=22.5°,再根据角的和差和三角形内角和定理证明,然后求出,然后通过证明,利用相似三角形的对应边成比例即可求解.【详解】(1)∵四边形ABCD是平行四边形,,∴,∴,又∵,∴,,故F在AC的延长线上.又,,而,∴,而,∴,∴,又,,∴,∴,∴,(2)过A作于M,∵,,∴BC=4,∴,,又∵,∴BP=3,CP=,∴,∴,由(1)知AP=AE,∴是等腰直角三角形,∴;(3)由,且得,∴,∴,∴,∴,∴,∵,∴,而∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的性质,余角的性质,等腰三角形的判定与性质,三角形外角的性质,勾股定理,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学美术鉴赏试题及答案
- 出师表课件笔记
- 企业安全培训课程内容课件
- 2025水利工程施工监理合同专用条件模板样本
- 2025公寓房屋买卖合同范文
- 2025年三维打印设备购销合同
- 2025医院临时工劳动合同书
- 2025【合同范本】简易个人房屋转售合同
- 冰的秘密课件
- 版权溯源技术优化-洞察及研究
- 邮储银行招聘考试笔试试题集及参考答案
- 投标部奖罚管理办法
- 补充耕地后期管护方案(3篇)
- 设备设施运行台账教学幻灯片
- 健康四大基石科普讲座
- 护士培训班自我介绍
- 2025深入贯彻中央八项规定精神学习教育测试题和答案
- 音乐人工智能应用-洞察阐释
- 2026年中考英语一轮复习:1600个必背词汇 话题记忆+默写本
- 2025年华电煤业招聘笔试备考题库(带答案详解)
- 小流域治理工程监理工作报告小流域治理监理报告
评论
0/150
提交评论