复试材料力学重点知识点总结(二轮主要)_第1页
复试材料力学重点知识点总结(二轮主要)_第2页
复试材料力学重点知识点总结(二轮主要)_第3页
复试材料力学重点知识点总结(二轮主要)_第4页
复试材料力学重点知识点总结(二轮主要)_第5页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10复试面试材力重点总结一.材料力学的一些根本概念材料力学的任务:解决安全牢靠与经济适用的冲突。争论对象:杆件强度:抵抗破坏的力量刚度:抵抗变形的力量稳定性:瘦长压杆不失稳。材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。均匀性:构件内各处的力学性能一样。各向同性:物体内各方向力学性能一样。材力与理力的关系,内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者一样;理力:刚体,材力:变形体。内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置〔点、作用方向、和符号规定。压应力拉应力线应变应变:反映杆件的变形程度角应变变形根本形式:拉伸或压缩、剪切、扭转、弯曲。物理关系、本构关系虎克定律;剪切虎克定律:

拉伸或压缩。ElPlEA夹角的变化。Gr适用条件:应力~应变是线性关系:材料比例极限以内。材料的力学性能〔拉压:一张σ-εδ、ψ,三个应力特征点:、、p s

,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。拉压弹性模量E,剪切弹性模量G,泊松比vG塑性材料与脆性材料的比较:

E21〕变形变形强度抗冲击应力集中塑性材料流淌、断裂变形明显拉压 的根本一样较好地承受冲击不敏感s脆性无流淌、脆断仅适用承压格外敏感安全系数:大于1的系数,使用材料时确定安全性与经济性冲突的关键。过小,使构件安全性下降;过大,浪费材料。许用应力:极限应力除以安全系数。塑性材料

ns 0nss脆性材料

bn 0bb b材料力学的争论方法所用材料的力学性能:通过试验获得。对构件的力学要求:以试验为根底,运用力学及数学分析方法建立理论,推测理论应用的将来状态。8.材料力学中的平面假设查找应力的分布规律,通过对变形试验的观看、分析、推论确定理论依据。拉〔压〕杆的平面假设试验:横截面各点变形一样,则内力均匀分布,即应力处处相等。圆轴扭转的平面假设试验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。纯弯曲梁的平面假设纵向纤维;正应力成线性分布规律。小变形和叠加原理小变形:①梁绕曲线的近似微分方程②杆件变形前的平衡③切线位移近似表示曲线④力的独立作用原理叠加原理:①叠加法求内力②叠加法求变形。材料力学中引入和使用的的工程名称及其意义〔概念〕荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。单元体,应力单元体,主应力单元体。名义剪应力,名义挤压力,单剪切,双剪切。自由扭转,约束扭转,抗扭截面模量,剪力流。〔弯曲中心主应力迹线,刚架,跨度,斜弯曲,截面核心,折算弯矩,抗弯截面模量。相当应力,广义虎克定律,应力圆,极限应力圆。欧拉临界力,稳定性,压杆稳定性。8)动荷载,交变应力,疲乏破坏。四种根本变形:根本变形根本变形截面几何刚度应力公式变形公式备注性质拉伸与压缩面积:A抗拉(压)刚度EANANll留意变截面及EA变轴力的状况剪切面积:A——QA——有用计算法圆轴扭转极惯性矩抗扭刚度MTmaxmaxWI 2dApGIpMlTGIPP纯弯曲惯性矩抗弯刚度I ydAmaxMmaxWZd2yM〔x〕挠度ydx2EI2EIzZ〔1 M〔x〕ZEIdydxZ四种根本变形的刚度,都可以写成:1)物理常数:某种变形引起的正应力:抗拉〔压〕弹性模量E;某种变形引起的剪应力:抗剪〔扭〕弹性模量G。2)截面几何性质:A;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩I ;梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩I 。Z四种根本变形应力公式都可写成:内力应力=截面几何性质对扭转的最大应力:截面几何性质取抗扭截面模量W Ip Z对弯曲的最大应力:截面几何性质取抗弯截面模量W Z

maxIZymax四种根本变形的变形公式,都可写成:内力长度变形= 刚度因剪切变形为有用计算方法,不考虑计算变形。弯曲变形的曲率

1 d2y

l的纯弯曲梁有:〔x〕 dx2l Ml〔x x补充与说明:1、关于“拉伸与压缩”

〕EIz指简洁拉伸与简洁压缩,即拉力或压力与杆的轴线重合;假设外荷载作用线不与轴线重合,就成为拉〔压〕与弯曲的组合变形问题;杆的压缩问题,要留意它的长细比 〔柔度。这里的简洁压缩是指“小柔度压缩问题。2、关于“剪切”布的假设。要留意有不同的受剪截面:a.单面受剪:受剪面积是铆钉杆的横截面积;b.双面受剪:受剪面积有两个:考虑整体构造,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积。c.圆柱面受剪:受剪面积以冲头直径dt为高的圆柱面面积。关于扭转表中公式只有用于圆形截面的直杆和空心圆轴杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件根本变形理论解决实际问题的很好例子。关于纯弯曲Q=0时才发生,平面假设成立。横力弯曲〔剪切弯曲〕可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理论的材料力学方法作了一些奇异的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。故剪应力在宽度上不变,方向与荷载〔剪力〕平行。分析剪应力沿梁截面高度分布变化规律时,假设仅在截面内,有 (h)bdhQ,因(h) 的函数形式未知,无法n可以得出:ZIbz剪应力在横截面上沿高度的变化规律就表达在静矩

S *上,zS*总是正的。z剪应力公式及其假设:矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q的方向全都;假设2:横截面上同一层高上的剪应力相等。剪应力公式:(y)

QS*(y)zIzb ,b y S*Z

222y2 3Q3非矩形截面积

max 2 bh 2 平均假设1:同一层上的剪应力 作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。y假设2:同一层上的剪应力在剪力Q方向上的重量 剪应力公式:y (y)y

QS*(y)zzb(y)Iz23S*(y) (R2y2)223z 34 Q y2

2(y) 3

1 y 2

Rmax

43 平均薄壁截面假设1:剪应力与边界平行,与剪应力谐调。假设2:沿薄壁t,均匀分布。 剪应力公式:QS* ztIz学会运用“剪应力流”概念确定截面上剪应力的方向。三.梁的内力方程,内力图,挠度,转角遵守材料力学中对剪力QM的符号规定。在梁的横截面上,总是假定内力方向与规定方向一坐标原点放在梁的左端〔或右端,使后一段的弯矩方程中总包括前面各段。q、剪力Q、弯矩M、转角θy间的关系:由: EI

d2y

M,

dMQ,dQqdx2

dx dx有

dx3

dMQ〔x〕dx

EId4ydx4

q〔x〕设坐标原点在左端,则有:q:EIqEI

d4ydx4d3y

q,q为常值qxAQ :M:EI

dx3d2y qx2

AxBdx2 2: EI

dyq

x3

Ax2

BxCdx 6 2y:EIyq

Ax3B

x2CxD24 6 2其中A、B、C、D四个积分常数由边界条件确定。例如,如图示悬臂梁:则边界条件为:

Q|

0A0M|x0

0B0q| 0C l3xl 6qy| 0Dxl

8l4q ql3 ql4EIy

24x4 6 x 8yx0

ql48EI截面法求内力方程:内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的起始、终止点为分段点;在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;剪力等于脱离梁段上外力的代数和。脱离体截面以外另一端,外力的符号同剪力符号规定,其他外力与其同向则同号,反向则异号;1119弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。外力矩及外力偶的符号依弯矩符号规则确定。梁内力及内力图的解题步骤:建立坐标,求约束反力;划分内力方程区段;依内力方程规律写出内力方程;运用分布荷载q、剪力Q、弯矩M的关系作内力图;d2M

dQ

dMQxdx2关系:Q Q

dx dxdqxdx

M dQxdx D C D Cc c规定:①荷载的符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正。剪力图和弯矩图的规定:剪力图的Q轴向上为正,弯矩图的M轴向下为正。作剪力图和弯矩图:①无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率〔﹨;Q<0,有负斜率〔/;②有分布荷载的梁段〔设为常数,剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率〔﹨,M图下凹〔︶q0,Q图有正斜率〔/,M图上凸〔︵;Q=0的截面,弯矩可为极值;此处弯矩图的斜率也突变,弯矩图有尖角;值为力偶之矩;〔包括梁固定端截面,确定最大弯矩〔

;max弯矩与该两截面间剪力图面积值的和。共轭梁法求梁的转角和挠度:要领和留意事项:首先依据实梁的支承状况,确定虚梁的支承状况梁的弯矩为正时,虚分布荷载方向向上;反之,则向下。虚分布荷载qx的单位与实梁弯矩Mx单位一样假设为KNm,虚剪力的单位则为KNm2,虚弯矩的单KNm3由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等。计算时需要这些图形的面积和形心位置。叠加法求梁的转角和挠度:各荷载对梁的变形的影响是独立的。当梁同时受n种荷载作荷载单独作用时该截面的转角或挠度的代数和。单向拉伸和压缩应力状态划分为单向、二向和三向应力状态。是依据一点的三个主应力的状况而确定的。1x1x

, 2

0 单向拉伸X

X,E

vz x1x主应力只有,但就应变,三个方向都存在。1x假设沿 和

2 取出单元体,则在四个截面上的应力为:

Cos2, x

xSin22 2

Sin2,x

2

xSin22看起来似乎为二向应力状态,其实是单向应力状态。二向应力状态.有三种具体状况需留意两个主应力的大小和方向,求指定截面上的应力

1

1

Cos2 2 2

1

2Sin2 2由任意相互垂直截面上的应力,求另一任意斜截面上的应力

x Y x yCos2

Sin2 2 2 x x

Sin2

Cos2 2 x由任意相互垂直截面上的应力,求这一点的主应力和主方向〔x2y2〔x2y22x1 x y 22 2tg2

x y〔角度 和0 均以逆时针转动为正〕二向应力状态的应力圆应力圆在分析中的应用:应力圆上的点与单元体的截面及其上应力一一对应;应力圆直径两端所在的点对应单元体的两个相互垂直的面;〔锐角是应力单元对应截面外法线间夹角的两倍2;应力圆与正应力轴的两交点对应单元体两主应力;应力圆中过圆心且平行剪应力轴而交于应力圆的两点为最大、最小剪应力及其作用面。极点法:确定主应力及最大〔小〕剪应力的方向和作用面方向。三方向应力状态,三向应力圆,一点的最大应力〔最大正应力、最大剪应力〕广义虎克定律:弹性体的一个特点是,当它在某一方向受拉时,与它垂直的另外方向就会收缩。反之,沿一个方向缩短,另外两个方向就拉长。主轴方向: 1

E

〕 1vv

1v

v 11 E 1 2 3 1

1 2 3 1

E v2 E

2 3

或 2

1vv

2 3 1

1

E 3 E 3

1 2

1Vv

1v

v 3

3 1 2非主轴方向:

1x Ex

y

z 1 vy E y

z x z E z x y体积应变: 1 2 3

12vE 1 2

31.计算公式.强度理论可以写成如下统一形式: rr其中: :相当应力,由三个主应力依据各强度理论按一r定形式组合而成。

0 0n:安全系数。

n , :单向拉伸时的极限应力,最大拉应力理论〔第一强度理论〕 ,一般:r1 1

bn最大伸长线应变理论〔其次强度理论〕 r2

2

,一般:bn3n最大剪应力理论〔第三强度理论〕 r3

s3n外形转变比能理论〔第四强度理论〕3n1

s r4 2

1

2 2

2 3

2 ,一般: n莫尔强度理论 M 1

3

0n ,n

0:材料抗拉极限应力强度理论的选用:一般,脆性材料应承受第一和其次强度理论;塑性材料应承受第三和第四强度理论。对于抗拉和抗压强度不同的材料,可承受最大拉应力理论三向拉应力接近相等时,宜承受最大拉应力理论;三向压应力接近相等时,宜应用第三或第四强度理论。六.分析组合形变的要领材料听从虎克定律且杆件形变很小,则各根本形变在杆件内引起的应力和形变可以进展叠加,即叠加原理或力作用的独立性原理。分析计算组合变形问题的要领是分与合:分荷载与根本形变,分别计算应力和位移。合:马上各根本变形引起的应力和位移叠加,一般是几何和。分与合过程中觉察的概念性或规律性的东西要概念清楚、牢记。斜弯曲:平面弯曲时,梁的挠曲线是荷载平面内的一条曲线,故称平面弯曲;斜弯曲时,梁的挠曲线不在荷载平面内,所以称斜弯曲。斜弯曲时几个角度间的关系要清楚:力作用角〔力作用平面:斜弯曲中性轴的倾角:斜弯曲挠曲线平面的倾角:tg

IztgIyItg

z tgIy 即:挠度方向垂直于中性轴一般, 或即:挠曲线平面与荷载平面不重合。强度刚度计算公式:max

maxMWMz

cosWzWc

sinsin

f2f2f2y zPl3f y

pl3 cosy 3EIz

3EIzPf zl sinP3 pl3z 3EIy拉〔压〕与弯曲的组合:

3EIy拉〔压〕与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区分偏心拉压问题,有时要求截面上下只有一种应力,这时个较小的范围内这个范围称为截面的核心。强度计算公式及截面核心的求解:A NMA

maxmin z1ypy0

zpz00i2 i2z y i2a zy y p i2a yz zp扭转与弯曲的组合形变:机械工程中常见的一种杆件组合形变,故常为圆轴。分析步骤:依据杆件的受力状况分析出扭矩和弯矩和剪力。找出危急截面:即扭矩和弯矩均较大的截面。由扭转和弯曲形变的特点,危急点在轴的外表。剪力产生的剪应力一般相对较小而且在中性轴上〔弯曲正应力为零。一般可不考虑剪力的作用。弯扭组合作强度分析,强度计算公式:242 242r3PP2A 4WTM2 P r323232r4PP2A 3WTM2 P r4扭转与拉压的组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析。强度计算公式242M2 242 4 Tr323232r4

W 2W1WM2M1WM2M2T1W1WT七.超静定问题:拉压压杆的超静定问 力力关键点变形协调条件 求解简洁超静定梁主要有三个步骤:解得超静定梁的多余约束而以其反力代替;变形;由原多余支座处找出变形协调条件,重立补充方程。能量法求超静定问题:U l0

内力22刚度dxU

22

dx

l22

dx

l 2G

dx

l kQ2 dx2G0 0 0 0卡氏第肯定理:应变能对某作用力作用点上该力作用方向上的位移的偏导数等于该作用力,即:U P ii1:卡氏第肯定理也适用于非线性弹性体;2:应变能必需用诸荷载作用点的位移来表示。卡氏其次定理:线弹性系统的应变能对某集中荷载的偏导数等于该荷载作用点上沿该荷载方向上的位移,即U P ii假设系统为线性体,则:UU1:卡氏其次定理仅适用于线弹性系统;卡氏其次定理的应变能须用独立荷载表示。注22425压杆失稳破坏时横截面上的正应力小于屈服极限〔或强度极限,甚至小于比例极限。即失稳破坏与强度缺乏的破坏是两种性质完全不同的破坏。〔主要是,主要与压杆截面的外形和尺寸,杆的长度,杆的支承状况密切相关。计算临界力要留意两个主惯性平面内惯矩I和长度系数μ的对应。压杆的长细比或柔度表达了欧拉公式的运用范围。瘦长杆〔大柔度杆〕运用欧拉公式判定杆的稳定性,短压杆〔小柔度杆〕只发生强度破坏而一般不会发生失稳破坏;中长杆〔中柔度杆〕既有强度破坏又有较明显失稳现象,通常依据试验数据处理这类问题,直线阅历公式是最简洁有用的一种。折剪系数ψ是柔度λ的函数,这是由于柔度不同,临界应力也不同。且柔度不同,安全系数也不同。压杆稳定性的计算公式:欧拉公式及ψ系数法〔略〕动荷载分析的根本原理和根本方法:1〕动静法,其依据是达朗贝尔原理。这个方法把动荷的问题转化为静荷的问题。2〕能量分析法,其依据是能量守恒原理。这个方法为分析简单的冲击问题供给了简单的计算手段。在运用此法分析计算实际工程问题时应留意回到其根本假设逐项进展考察与分析,否则有时将得出不合理的结果。构件作等加速运动或等角速转动时的动载荷系k

d为:k d stdd这个式子是动荷系数的定义式它给出了k k的计算式则要依据构件的具体运动方式经分析推导而定。ddd构件受冲击时的冲击动荷系数k为:ddk d dd st st这个式子是冲击动荷系数的定义式,其计算式要依据具体的冲击形式经分析推导而定。两个kd中包含丰富的内容。它们不仅能给出动的量与静的量之间的相互关系,而且包含了影响动载荷和动应力的主要因素,从而为寻求降低动载荷对构件的不利影响的方法提供了思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论