




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
思想04运用转化与化归的思想方法解题【命题规律】高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有分类讨论思想、数形结合思想、函数与方程思想、转化与化归思想等.【核心考点目录】核心考点一:运用“熟悉化原则”转化化归问题核心考点二:运用“简单化原则”转化化归问题核心考点三:运用“直观化原则”转化化归问题核心考点四:运用“正难则反原则”转化化归问题【真题回归】1.(2022·全国·统考高考真题)已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.2.(2020·全国·统考高考真题)设复数,满足,,则=__________.3.(2020·天津·统考高考真题)已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.甲、乙两球都不落入盒子的概率为,所以甲、乙两球至少有一个落入盒子的概率为.故答案为:;.4.(2022·全国·统考高考真题)如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.【方法技巧与总结】将问题进行化归与转化时,一般应遵循以下几种原则:1、熟悉化原则:许多数学问题的解决过程就是将陌生的问题转化为熟悉的问题,以利于我们运用已有知识、方法以及解题经验来解决.在具体的解题过程中,通常借助构造、换元、引入参数、建系等方法将条件与问题联系起来,使原问题转化为可利用熟悉的背景知识和模型求解的问题.2、简单化原则:根据问题的特点转化命题,使原问题转化为与之相关、易于解决的新问题.借助特殊化、等价转化、不等转化等方法常常能获得直接、清晰、简洁的解法,从而实现通过对简单问题的解答,达到解决复杂问题的目的.3、直观化原则:将较抽象的问题转化为比较直观的问题,数学问题的特点之一便是它具有抽象性,有些抽象的问题,直接分析解决难度较大,需要借助数形结合法、图象法等手段把它转化为具体的、更为直观的问题来解决.4、正难则反原则:问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.一般地,在含有“至多”、“至少”及否定词的问题中,若出现多种成立的情形,则不成立的情形相对很少,此时从反面考虑较简单.【核心考点】核心考点一:运用“熟悉化原则”转化化归问题【典型例题】例1.(2023春·云南昆明·高三昆明市第三中学阶段练习)如图所示,在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,AE=,cosB=,∠ADB=.(1)求AD的长;(2)求△ADE的面积.例2.(2023·吉林·高三校联考竞赛)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E、F分别是AC、BC的中点,,则球O的表面积为____________.例3.(2023春·山东潍坊·高三校考阶段练习)已知正实数a,b满足,则的最小值为____________.例4.(2023春·江苏南京·高三南京市第一中学校考阶段练习)如图,在四边形ABCD中,∠B=60°,AB=3,BC=6,且,若M,N是线段BC上的动点,且,则的最小值为___________例5.(2023春·广西桂林·高三校考阶段练习)已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,分别是,的中点,,则球的体积为(
)A. B. C. D.核心考点二:运用“简单化原则”转化化归问题【典型例题】例6.(2023春·陕西渭南·高三渭南市瑞泉中学校考阶段练习)平面四边形ABCD中,,AB=2,则AD长度的取值范围________.例7.(2023春·北京·高三北京市第一六一中学校考)三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________例8.(2023秋·山东聊城·高三山东聊城一中校考阶段练习)已知∠ACB=90°,P为平面ABC外一点,PC=4,点P到∠ACB两边AC,BC的距离均为,那么点P到平面ABC的距离为___________.例9.(2023春·湖南衡阳·高三校考)设,,为正数,且,则(
)A. B. C. D.核心考点三:运用“直观化原则”转化化归问题【典型例题】例10.(2023春·北京·高三校考)已知函数是定义在上的奇函数,当时,的图象如图所示,那么满足不等式的的取值范围是(
)A. B.C. D.例11.(2023·全国·高三专题练习)已知、、是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是A. B. C.2 D.例12.(2023秋·福建莆田·高三莆田二中校考)设函数,其中,若存在唯一的整数,使得,则的取值范围是(
)A. B. C. D.核心考点四:运用“正难则反原则”转化化归问题【典型例题】例13.(2023·全国·高三专题练习)已知矩形,,,将沿矩形的对角线所在的直线进行翻折,在翻折的过程中A.存在某个位置,使得直线和直线垂直B.存在某个位置,使得直线和直线垂直C.存在某个位置,使得直线和直线垂直D.无论翻折到什么位置,以上三组直线均不垂直例14.(2023春·湖南·高三校联考开学考试)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________.例15.(2023秋·陕西宝鸡·高三陕西省宝鸡市长岭中学校考阶段练习)如图,用K,,三类不同的元件连接成一个系统.当K正常工作且,至少有一个正常工作时,系统正常工作.已知K,,正常工作的概率依次为0.8,0.7,0.7,则系统正常工作的概率为___________.例16.(2023·全国·高三专题练习)如图,用A、B、C三类不同的元件连接成两个系统,.当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80、0.90、0.90.则系统N1正常工作的概率为___________,系统正常工作的概率为___________.【新题速递】一、单选题1.(2023春·江苏盐城·高三盐城中学校考)已知满足,若存在实数,使得不等式成立,则实数k的最小值为(
)A.-4 B.-1 C.1 D.42.(2023春·陕西榆林·高三绥德中学校考)已知,是椭圆的左、右焦点,是椭圆的左顶点,点在过且斜率为的直线上,为等腰三角形,,则椭圆的离心率为(
)A. B. C. D.3.(2023春·安徽淮北·高三淮北一中校考阶段练习)已知函数的最大值为M,最小值为m,则等于(
)A.0 B.2 C.4 D.84.(2023春·广东广州·高三校考)已知数列是公比不等于的等比数列,若数列,,的前2023项的和分别为,,9,则实数的值(
)A.只有1个 B.只有2个 C.无法确定有几个 D.不存在5.(2023春·山西太原·高三统考)下列结论正确的个数是(
)①已知点,则外接圆的方程为;②已知点,动点满足,则动点的轨迹方程为;③已知点在圆上,,且点满足,则点的轨迹方程为.A.0 B.1 C.2 D.36.(2023春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点,,P是它们的一个交点,且,记椭圆和双曲线的离心率分别为,,则的最小值为(
)A. B. C. D.37.(2023·全国·高三专题练习)在某次数学考试中,学生成绩服从正态分布.若在内的概率是,则从参加这次考试的学生中任意选取3名学生,恰有2名学生的成绩不低于85的概率是(
)A. B. C. D.二、多选题8.(2023·全国·高三专题练习)已知M为圆C:上的动点,P为直线l:上的动点,则下列结论正确的是(
)A.直线l与圆C相切 B.直线l与圆C相离C.|PM|的最大值为 D.|PM|的最小值为9.(2023春·江苏盐城·高三校联考阶段练习)函数,图像一个最高点是,距离点A最近的对称中心坐标为,则下列说法正确的有(
)A.的值是6B.时,函数单调递增C.时函数图像的一条对称轴D.的图像向左平移个单位后得到图像,若是偶函数,则的最小值是10.(2023秋·辽宁朝阳·高三统考开学考试)已知函数,若过点(其中是整数)可作曲线的三条切线,则的所有可能取值为(
)A.2 B.3 C.4 D.511.(2023秋·辽宁朝阳·高三统考开学考试)已知、分别是椭圆的左、右焦点,点A是椭圆C上一点,则下列说法正确的是(
)A. B.椭圆C的离心率为C.存在点A使得 D.面积的最大值为1212.(2023春·江苏南通·高三校联考)已知定义在R上函数的图象是连续不断的,且满足以下条件:①;②,,当时,都有;③,下列选项成立的是(
)A. B.若,则C.若, D.,使得三、填空题13.(2023·高三课时练习)如图,在三棱锥中,底面边长与侧棱长均为,点,分别是棱,上的点,且,,则的长为______.14.(2023秋·广东佛山·高三统考期末)若函数的图像在上恰好有一个点的纵坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 半导体项目管理制度
- 水果超市怎样管理制度
- 新型种植果园管理制度
- 建设期间安全管理制度
- 系统集成项目管理基础试题及答案
- 医务部出科考试题及答案
- 烟叶烘烤工厂管理制度
- 影视公司高级管理制度
- 货运公司九项管理制度
- 雄县事业单位考试试题及答案
- 常见异常心电图正确识别理论考核试题题库及答案
- 六旋翼无人机的设计(毕业设计)
- 《低段培智学生行为习惯养成教育的研究》小课题研究中期报告
- TC4钛合金拉拔工艺探索
- 八年级数学上册《平方差公式》的教学反思(优秀3篇)
- 填石路堤沉降差检测记录表
- “乡村振兴”战略应知应会试题及答案(分享)
- 衢州万达暖通工程施工方案(最终版)
- 学校端午假期致学生家长一封信
- 遗传自制习题答案个我
- 链轮齿数尺寸对照表三
评论
0/150
提交评论