




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市莱阳城厢街道办事处西关中学2022-2023学年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,则n的值为(
)A.100 B.1000 C.90 D.900参考答案:A【分析】根据频率分布直方图得到支出在的同学的频率,利用频数除以频率得到.【详解】由频率分布直方图可知,支出在的同学的频率为:本题正确选项:【点睛】本题考查利用频率分布直方图计算频率、频数和总数的问题,属于基础题.2.已知平行四边形ABCD的对角线分别为AC,BD,且,点F是BD上靠近D的四等分点,则(
)A. B.C. D.参考答案:B【分析】由题意,,,又由,,代入化简,即可求解.【详解】由题意,因为,且点是上靠近的四等分点,∴,,∴,∵,,∴.故选:B.【点睛】本题主要考查了平面向量的基本定理、向量的三角形法则,其中解答中熟记平面向量的基本定理和向量的运算法则是解答的关键,着重考查了推理能力与计算能力,属于中档题.3.若是互不相同的直线,是平面,则下列命题中正确的是(
)A.若则
B.若则C.若则
D.若则参考答案:C4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,绿灯持续时间为45秒,若一名行人来到该路口遇到红灯,则至少需要等街15秒才出现绿灯的概率为(
)A.
B.
C.
D.参考答案:D5.下列说法中,正确的是
(
)A.任何一个集合必有两个子集B.若C.任何集合必有一个真子集
D.若为全集,参考答案:D略6.已知,则是的:A.充分不必要条件
B.必要不充分条件
C.充要条件 D.既不充分也不必要条件参考答案:A7.设[x]表示不超过x的最大整数,如[-3.14]=-4,[3.14]=3.已知数列{an}满足:,(),则=(
)A.1 B.2 C.3 D.4参考答案:A【分析】先求出,再求得值.【详解】由,得(),又,∴.则.∴.故选:A.【点睛】本题主要考查数列通项的求法,考查数列求和,考查新定义,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.(5分)设集合P={(x,y)|x+y<4,x,y∈N*},则集合P的非空子集个数是() A. 2 B. 3 C. 7 D. 8参考答案:C考点: 子集与真子集.专题: 集合.分析: 根据集合子集的公式2n(其中n为集合的元素),求出集合A的子集个数,然后除去空集即可得到集合A的非空子集的个数.解答: 因集合P={(x,y)|x+y<4,x,y∈N*},故P{(1,1),(1,2),(2,1)},所以集合P有3个元素,故P的非空子集个数是:23﹣1=7.故选C.点评: 解得本题的关键是掌握当集合中元素有n个时,非空子集的个数为2n﹣1.同时注意子集与真子集的区别:子集包含本身,而真子集不包含本身.9.(5分)如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A. AC⊥SB B. AB∥平面SCD C. SA与平面SBD所成的角等于SC与平面SBD所成的角 D. AB与SC所成的角等于DC与SA所成的角参考答案:D考点: 直线与平面垂直的性质.专题: 综合题;探究型.分析: 根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.解答: 解:∵SD⊥底面ABCD,底面ABCD为正方形,∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;∵AB∥CD,AB?平面SCD,CD?平面SCD,∴AB∥平面SCD,故B正确;∵SD⊥底面ABCD,∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的,而△SAO≌△CSO,∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确;故选D.点评: 此题是个中档题.考查线面垂直的性质定理和线面平行的判定定理,以及直线与平面所成的角,异面直线所成的角等问题,综合性强.10.如图为函数的图像,其中、常数,则下列结论正确的是
(
)A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.sin2(-x)+sin2(+x)=_________参考答案:112.已知向量则与的夹角为。参考答案:
解析:为利用向量坐标公式设,且与的夹角为
则∴由题设得
注意到,故得:13.定义在上的奇函数,当时,,则方程的所有解之和为
.参考答案:略14.在等比数列中,,公比,若,则的值为
.参考答案:7【详解】因为,,故答案为7.考点:等比数列的通项公式.15.有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则这2个人在不同层离开的概率为__________.参考答案:16.在相距千米的两点处测量目标,若,,则两点之间的距离是
千米(结果保留根号).参考答案:17.已知等差数列则n=
.参考答案:10试题分析:根据公式,,将代入,计算得n=10.考点:等差数列的通项公式.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数.(Ⅰ)若对一切实数,恒成立,求的取值范围;(Ⅱ)若对于,恒成立,求的取值范围.参考答案:解(Ⅰ)当时,恒成立,符合;
当时,,
(Ⅱ)
即求的最小值,略19.小王大学毕业后决定利用所学知识自主创业,在一块矩形的空地上办起了养殖场,如图所示,四边形ABCD为矩形,米,米,现为了养殖需要,在养殖场内要建造一个蓄水池,小王因地制宜,建造了一个三角形形状的蓄水池,其中顶点分别为A,E,F(E,F两点在线段BD上),且,设.(1)请将蓄水池的面积表示为关于角的函数形式,并写出该函数的定义域;(2)当角为何值时,蓄水池的面积最大?并求出此最大值.
参考答案:(1)因为,,所以,在中,米,米,所以,中,在中由正弦定理得:所以,在中,由正弦定理得:所以,则的面积,,
......7分(2)因为,所以所以则的最小值为所以当时,取最大值为答:当时,蓄水池的面积最大,最大值为……...………12分20.(1)求关于x的不等式的解集;(2)已知二次不等式的解集为或,求关于x的不等式的解集.参考答案:(1)详见解析;(2).【分析】(1)采用十字相乘法分解因式,对进行讨论即可(2)由二次不等式的解集为或分析可知代入解出a,b与a,c的关系,再进行求解即可【详解】(1)①当②③(2)由不等式的解集为可知由韦达定理得
解得所以,所求不等式的解集为(-3,-2).【点睛】二次不等式与相对应的方程及二次函数对应的图像密不可分,结合图像性质理解方程和不等式也是我们常采用的方法,本题体现了不等式与方程,不等式与函数的转化思想21.已知函数f(x)在其定义域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),当x>1时,f(x)>0;(1)求f(8)的值;(2)讨论函数f(x)在其定义域(0,+∞)上的单调性;(3)解不等式f(x)+f(x﹣2)≤3.参考答案:【考点】3P:抽象函数及其应用.【分析】(1)题意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f[x(x﹣2)]<f(8),(2)利用函数单调性的定义即可证明f(x)在定义域上是增函数;(3)由f(x)的定义域为(0,+∞),且在其上为增函数,将不等式进行转化即可解得答案.【解答】解:(1)∵f(xy)=f(x)+f(y),f(2)=1,∴f(2×2)=f(2)+f(2)=2,∴f(8)=f(2×4)=f(2)+f(4)=3,(2)当x=y=1时,f(1)=f(1)+f(1),则f(1)=0,f(x)在(0,+∞)上是增函数设x1<x2,则∵f(x1)<f(x2),∴f(x1)﹣f(x2)<0,任取x1,x2∈(0,+∞),且x1<x2,则>1,则f()>0,又f(x?y)=f(x)+f(y),∴f(x1)+f()=f(x2),则f(x2)﹣f(x1)=f()>0,∴f(x2)>f(x1),∴f(x)在定义域内是增函数.(3)由f(x)+f(x﹣2)≤3,∴f(x(x﹣2))≤f(8)∵函数f(x)在其定义域(0,+∞)上是增函数,∴解得,2<x≤4.所以不等式f(x)+f(x﹣2)≤3的解集为{x|2<x≤4}
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大型礼仪庆典活动策划公司员工保密合同
- 生产安全及危险应急培训课件
- 农业种植2025年智能化风险评估与精细化管理效果评估报告
- 理论培训安全教育总结课件
- 理血中药学课件
- 盖楼工程项目方案(3篇)
- 冬季保温工程养护方案(3篇)
- 农业碳汇开发市场潜力与政策环境研究
- 安全数教育培训台帐课件
- 猫咪胡须作用课件
- 部编版六年级语文上册重点难点解析
- 重庆市南开中学高2026届高三第一次质量检测+化学答案
- 肖婷民法总则教学课件
- 教育培训课程开发与实施指南模板
- 2025保密协议范本:物流行业货物信息保密
- 2025卫星互联网承载网技术白皮书-未来网络发展大会
- 半导体行业面试问题及答案解析
- 《研学旅行课程设计与实施》全套教学课件
- DB15T 2618-2022 公路工程工地试验室建设与管理规范
- 2025至2030年中国绿色船舶行业发展前景预测及投资方向研究报告
- 2025年小学生“学宪法、讲宪法”网络知识竞赛题库及答案
评论
0/150
提交评论