




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市长岛中学2023年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直线l的方程为y=x+1,则该直线l的倾斜角为(
)A.30° B.45° C.60° D.135°参考答案:C【考点】直线的倾斜角.【专题】转化思想;分析法;直线与圆.【分析】利用直线的倾斜角与斜率之间的关系即可得出.【解答】解:设此直线的倾斜角为θ,θ∈[0°,180°).∵直线的斜截式方程是y=x+1,∴tanθ=,∴θ=60°.故选:C.【点评】本题考查了直线的倾斜角与斜率之间的关系,考查了推理能力与计算能力,属于基础题.2.下列命题中真命题的个数为:(
)①命题“若,则x,y全为0”的逆命题;②命题“全等三角形是相似三角形”的否命题;③命题“若m>0,则有实根”的逆否命题;④命题“在中,、、分别是角A、B、C所对的边长,若,则”的逆否命题。A.1 B.2 C.3 D.4参考答案:C略3.从a处望b处的仰角为α,从b处望a处的俯角为β,则α,β的关系是().a.α>β
b.α=βc.α+β=90°
d.α+β=180°参考答案:B4.直线L1:2x+(m+1)y+4=0与直线L2:mx+3y-2=0平行,则m的值为(
)A.2
B.-3
C.2或-3
D.-2或-3参考答案:C5.当1,2,3,4,5,6时,比较和的大小并猜想
(
)A.时,
B.时,C.时,
D.时,参考答案:D略6.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等参考答案:C【考点】L2:棱柱的结构特征.【分析】运用棱柱的定义,性质判断即可.【解答】解:对于A,棱柱的侧面都是四边形,A不正确;对于B,四棱柱有两个对应侧面是矩形,则该棱柱的其它侧面也可以不是矩形,故不正确.对于C,正正方体的所有棱长都相等,正确;对于D,棱柱的各条棱都相等,应该为侧棱相等,所以不正确;故选:C.7.如右图所示,直线的斜率分别为,则(A)
(B)
(C)
(D)参考答案:C8.有如下四个命题:①命题“若,则“的逆否命题为“若”②若命题,则③若为假命题,则,均为假命题④“”是“”的充分不必要条件其中错误命题的个数是(
)A.0个
B.1个
C.2个
D.3个参考答案:B略9.已知△ABC中,a=1,,A=30°,则B等于()A.30° B.30°或150° C.60° D.60°或120°参考答案:D【考点】正弦定理.【分析】根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【解答】解:由题意得,△ABC中,a=1,,A=30°,由得,sinB===,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点评】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.10.如果二次函数有两个不同的零点,则的取值范围是(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.随机变量的分布列如下:其中成等差数列,若,则的值是
▲
.参考答案:12.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则.类比这个结论可知:四面体A﹣BCD的四个面分别为S1、S2、S3、S4,内切球半径为R,四面体A﹣BCD的体积为V,则R=.参考答案:【考点】F3:类比推理.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可求得R.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为则R=;故答案为:.13.已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,若直线l被圆C截得的弦长最短,则m的值为.参考答案:﹣【考点】直线与圆的位置关系.【分析】由于直线过定点M(3,1),点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,根据它们的斜率之积等于﹣1求出m的值.【解答】解:直线l:(2m+1)x+(m+1)y﹣7m﹣4=0即(x+y﹣4)+m(2x+y﹣7)=0,过定点M(3,1),由于点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,故它们的斜率之积等于﹣1,即=﹣1,解得m=﹣,故答案为:﹣.14.已知,,则
。参考答案:15.周长为3cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_______cm3.参考答案:【分析】由已知中周长为3cm的矩形,绕一条边旋转成一个圆柱,我们设出圆柱的长和宽,然后可以写出圆柱体积的表达式,利用导数法,分析出体积取最大值时,自变量的值,代入即可求出圆柱体积的最大值.【详解】解:矩形的周长为3cm设矩形的长为xcm,则宽为设绕其宽旋转成一个圆柱,则圆柱的底面半径为xcm,高为则圆柱的体积则当,则当,则即在上单调递增,在上单调递减故当圆柱体积取最大值此时故答案为:【点睛】本题考查的知识点是圆柱的体积,其中根据已知条件,设出圆柱的长和宽,然后可以写出圆柱体积的表达式,是解答本题的关键.16.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是________.参考答案:20”,“08”,“北京”三字块的排法共有“2008北京”、“20北京08”、“0820北京”、“08北京20”、“北京2008”、“北京0820”6种情况,而得到奖励的情况有2种,故婴儿能得到奖励的概率为=.17.在△ABC中,已知的值为
(
)A.-2
B.2
C.±4
D.±2参考答案:D三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M点的最短路线长为,设这条最短路线与C1C的交点为N。求1)
该三棱柱的侧面展开图的对角线长;2)
PC和NC的长;3)
平面NMP和平面ABC所成二面角(锐角)的大小(用反三角函数表示)参考答案:解析:①正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为②如图1,将侧面BC1旋转使其与侧面AC1在同一平面上,点P运动到点P1的位置,连接MP1,则MP1就是由点P沿棱柱侧面经过CC1到点M的最短路线。设PC=,则P1C=,在③连接PP1(如图2),则PP1就是NMP与平面ABC的交线,作NH于H,又CC1平面ABC,连结CH,由三垂线定理得,。19.(10分)解关于的不等式.参考答案:解:原不等式可化为即,也即所以原不等式的解集为20.(本大题12分)分别指出下列各题构成的“”,“”,“”形式复合命题的真假。(1)p:3是13的约数
q:3是方程的解。(2)p:相似三角形的对应边相等
q:相似三角形的对应角相等。参考答案:(1):3是13的约数或3是方程的解
:3是13的约数且3是方程的解:3不是13的约数。因为p是假命题,q是真命题。故分别为真命题、假命题、真命题。(2):相似三角形对应边相等或对应角相等。:相似三角形对应边相等且对应角相等:相似三角形对应边不一定相等。因为p为假命题,q为真命题,故分别为真命题、假命题、真命题。略21.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好经过抛物线的准线,且经过点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l的方程为x=﹣4.AB是经过椭圆左焦点F的任一弦,设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.试探索k1,k2,k3之间有怎样的关系式?给出证明过程.参考答案:考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设C方程为,利用顶点恰好经过抛物线的准线,求出b,根据椭圆经过点,求出a,即可求椭圆C的方程;(Ⅱ)设直线AB的方程代入,利用韦达定理,结合斜率公式,即可探索k1,k2,k3之间的关系式.解答:解:(Ⅰ)设C方程为,∵抛物线的准线,∴…(1分)由点在椭圆上,∴,∴a2=4…(3分)∴椭圆C的方程为.…(4分)(Ⅱ)由题意知,直线斜率存在.∵F(﹣1,0),∴设直线AB的方程为y=k(x+1),代入,得(4k2+3)x2+8k2x+4k2﹣12=0,…(5分)设A(x1,y1),B(x2,y2),由韦达定理得.…(6分)由题意知M(﹣4,﹣3k),…(8分)∵y1=k(x1+1),y2=k(x2+1),代人k1,k2得,∴…(10分)=…(12分)∴k1+k2=2k3…(13分)点评:本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶馆经营合作合同协议
- 西餐技术培训合同协议
- 舞台设备维保合同协议
- 解除厂房购买协议书范本
- 航空刀具采购合同协议
- 自用大磨床转让合同协议
- 药店股份制合同协议
- 自愿赠予法律合同协议
- 船舶转让合同协议书范本
- 解除共同债务合同协议
- 幕墙UHPC施工专项方案 (评审版)
- 【托比网】2024中国工业品数字化发展报告
- 砌石截水墙施工方案
- 海岸工程学设计计算书
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
- 创新设计前沿知到智慧树章节测试课后答案2024年秋浙江大学
- 小型手推式除雪机毕业设计说明书(有全套CAD图)
- 《城市级实景三维数据规范》
- 厚积薄发 行稳致远-六年级期中家长会【课件】
- 《中西药物的合理配伍与禁忌探究》6400字(论文)
- 2024年10月高等教育自学考试14169设计基础试题及答案
评论
0/150
提交评论