版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EstimatingCommunityParameters
Communityecologistsfaceaspecialsetofstatisticalproblemsinattemptingtocharacterizeandmeasurethepropertiesofcommunitiesofplantsandanimals.Onecommunityparameterissimilarity.Speciesdiversityisanotheroneofthemostobviousandcharacteristicfeaturesofacommunity.
1.MeasurementofSimilarity2.SpeciesDiversityMeasures第四章群落相似性和聚类分析第一节相似性测量在群落研究中,生态学家经常会得到某一群落的物种组成和数量。例如在保护区研究中,我们经常要回答的问题是这几个保护区他们在区系组成上有什么不同?哪些更相似,哪些差异较明显?要回答群落分类的这样复杂问题,我们先以测量两个群落的相似性着手。4.1.1BinaryCoefficients4.1.2DistanceCoefficients4.1.3CorrelationCoefficients4.1.4Morisita’sIndexofSimilarityBinaryCoefficientsThesimplestsimilaritymeasuresdealonlywithpresence/absencedata.Thebasicdataforcalculatingbinary(orassociation)coefficientsisa2×2table.SampleANo.ofspeciespresentNo.ofspeciesabsentabcdSampleBNo.ofspeciespresentNo.ofspeciesabsentWherea=NumberofspeciesinsampleAandsampleB(jointoccurrences)
b=NumberofspeciesinsampleBbutnotinsampleAc=NumberofspeciesinsampleAbutnotinsampleBd=Numberofspeciesabsentinbothsamples(zeromatches)
where=Jaccard’ssimilaritycoefficient=Asdefinedaboveinpresence/absencematrix
BinaryCoefficientsThereisconsiderabledisagreementintheliteratureaboutwhetherdisabiologicallymeaningfulnumber.Therearemorethan20binarysimilaritymeasuresavailableintheliterature(CheethamandHazel1969),andtheyhavebeenreviewedbyCliffordandStephenson(1975)andbyRomesburg(1984).CoefficientofJaccard
ThecoefficientofJaccardisexpressedasfollows:where=Euclideandistancebetweensamplesand=Numberofindividuals(orbiomass)ofspeciesinsample=Numberofindividuals(orbiomass)ofspeciesinsample=TotalnumberofspeciesEuclideanDistance
ThisdistanceisformallycalledEuclidiandistanceandcouldbemeasuredfromFigure11.2witharuler.Moreformally.Euclideandistanceincreaseswiththenumberofspeciesinthesamples,andtocompensateforthis,theaveragedistanceisusuallycalculated:where=AverageEuclideandistancebetweensamplesjandk
=Euclideandistance(calculatedinequation11.5)
n=NumberofspeciesinsamplesBothEuclideandistanceandaverageEuclideandistancevaryfrom0toinfinity;thelargerthedistance,thelesssimilarthetwocommunities.OneofthesimplestmetricfunctionsiscalledtheManhattan,orcity-block,metric:where=Manhattandistancebetweensamplesjandk=Numberofindividualsinspeciesiineachsamplejandkn=NumberofspeciesinsamplesThisfunctionmeasuresdistancesasthelengthofthepathyouhavetowalkinacity—hencethename.TwomeasuresbasedontheManhattanmetrichavebeenusedwidelyinplantecologytomeasuresimilarity.Bray-CurtisMeasure
BrayandCurtis(1957)standardizedtheManhattanmetricsothatithasarangefrom0(similar)to1(dissimilar).whereB=Bray-Curtismeasureofdissimilarity=Numberofindividualsinspeciesiineachsample(j,k)
n=NumberofspeciesinsamplesSomeauthors(e.g.,Wolda1981)prefertodefinethisasameasureofsimilaritybyusingthecomplementoftheBray-Curtismeasure(1.0–B).TheBray-Curtismeasureisdominatedbytheabundantspecies,sothatrarespeciesaddverylittletothevalueofthecoefficient.CanberraMetric
LanceandWilliams(1967)standardizedtheManhattanmetricoverspeciesinsteadofindividualsandinventedtheCanberrametric:whereC=Canberrametriccoefficientofdissimilaritybetweensamplesjandk
n=Numberofspeciesinsamples=NumberofindividualsinspeciesIinthesample(j,k)TheCanberrametricisnotaffectedasmuchbythemoreabundantspeciesinthecommunity,andthusdiffersfromtheBray-Curtismeasure.TheCanberrametrichastwoproblems.Itisundefinedwhentherearespeciesthatareabsentfrombothcommunitysamples,andconsequentlymissingspeciescancontributenoinformationandmustbeignored.Whennoindividualsofaspeciesarepresentinonesample,butarepresentinthesecondsample,theindexisatmaximumvalue(CliffordandStephenson1975).Toavoidthissecondproblem,manyecologistsreplaceallzerovaluesbyasmallnumber(like0.1)whendoingthesummations.TheCanberrametricrangesfrom0to1.0and,liketheBray-Curtismeasure,canbeconvertedintoasimilaritymeasurebyusingthecomplement(1.0–C).BoththeBray-CurtismeasureandtheCanberrametricmeasurearestronglyaffectedbysamplesize(Wolda1981).
4.1.3CorrelationCoefficients
Onefrequentlyusedapproachtothemeasurementofsimilarityistousecorrelationcoefficientsofthestandardkinddescribedineverystatisticsbook(e.g.,SokalandRohlf1995)Armstrong(1977)trappedninespeciesofsmallmammalsintheRockyMountainsofColoradoandobtainedrelativeabundance(percentageoftotalcatch)estimatesfortwohabitattypes(“communities”)asfollows:例:SmallmammalspeciesHabitattypeScSvEmPmCgPiMlMmZpWillowoverstory7058504031535Nooverstory1011202098114644EuclideanDistanceFromequation(11.5),AverageEuclideandistanceBray-CurtisMeasureTouseasameasureofsimilaritycalculatethecomplementofB:CanberrametricTousetheCanberrametricasameasureofsimilaritycalculateitscomplement:例
EFFECTSOFADDITIVEANDPROPORTIONALCHANGESINSPECIESABUNDANCESONDISTANCEMEASURESANDCORRELATIONCOEFFICIENTS.HypotheticalComparisonofNumberofIndividualsinTwoCommunitieswithFourSpecies
Species1234CommunityA5025105CommunityB40302010CommunityB1(proportionalchange,2×)80604020CommunityB2(additivechange,+30)70605040
相关系数测度有人们希望的特点:当两个群落的样本之间是成比例的,或可加的差异,那么该系数对差异是极不敏感的。而所有距离测度对这些差异却很敏感。而相关系数测度的缺点则是强烈受样本大小的影响。特别是在高多样性的群落中更是这样。SamplescomparedA–BA–B1A–B2AverageEuclideandistance7.9028.5033.35Bray-Curtismeasure0.160.380.42Canberrametric0.220.460.51Pearsoncorrelationcoefficient0.960.960.96Spearmanrankcorrelationcoefficient1.001.001.00Conclusion:Ifyouwishyourmeasureofsimilaritytobeindependentofproportionaloradditivechangesinspeciesabundances,youshouldnotuseadistancecoefficienttomeasuresimilarity.Morisita’sIndexofSimilarity
ThismeasurewasfirstproposedbyMorisita(1959)tomeasuresimilaritybetweentwocommunities.ItshouldnotbeconfusedwithMorisita’sindexofdispersion(Section6.4.4).ItiscalculatedasProbabilitythatanindividualdrawnfromsamplejandonedrawnfromsamplekwillbelongtothesamespeciesProbabilitythattwoindividualdrawnfromeitherjorkwillbelongtothesamespeciesXij=numberofindividualsofspeciesiinsamplejNj=TotelnumberofindividualsinsamplejTheMorisitaindexvariesfrom0(nosimilarity)toabout1.0(completesimilarity).TheMorisitaindexwasfromulatedforcountsofindividualsandnotforotherabundanceestimatesbasedonbiomass,productivity,orcover.Horn(1966)proposedasimplifiedMorisitaindexinwhichallthe(-1)termsinequations(11.13)and(11.14)areignored:whereSimplifiedMorisitaindexofsimilarity(Horn1966)Thisformulaisappropriatewhentheoriginaldataareexpressedasproportionsratherthannumbersofindividualsandshouldbeusedwhentheoriginaldataarenotnumbersbutbiomass,cover,orproductivity.TheMorisitaindexofsimilarityisnearlyindependentofsamplesize,exceptforsamplesofverysmallsize.Morisita(1959)didextensivesimulationexperimentstoshowthis,andtheseresultswereconfirmedbyWolda(1981),whorecommendedMorisita’sindexasthebestoverallmeasureofsimilarityforecologicaluse.H.Wolda1981SimilarityIndices,SampleSizeandDiversityOecologia50:296-302第二节聚类分析聚类分析是研究分类问题的一种多元统计方法。4.2.1类与类之间的距离4.2.1.1最短距离法设类与类中两个最近元素之间的距离为与类之间的最短距离。4.2.1.2最长距离法4.2.1.3类平均法[unweigtedpair-groupmethodusingarithmeticaverages,UPGMA(SneathandSokal1973;Raneslurg1984)]设类与类中任意两个元素之间距离的平均值为两类之间的类平均距离。为与中任意两个元素之间距离。为中元素个数。为中元素个数。4.2.2聚类过程(1)从距离最短的一对样本开始,聚成第一类。(2)寻找第二对距离最短的样本,或者是于已形成的类最短的样本,形成新的一类。(3)重复步骤(2),直到所有的样本形成一大类。例
MATRIXOFSIMILARITYCOEFFICIENTSFORTHESEABIRDDATAINTABLE11.5.ISLANDSAREPRESENTEDINSAMEORDERASINTABLE11.5a
CHPLICINSCLCTSISPISGICH1.00.880.990.660.770.750.360.510.49PLI1.00.880.620.700.710.360.510.49CI1.00.660.780.750.360.500.48NS1.00.730.640.280.530.50CL1.00.760.290.510.49CT1.00.340.460.45SI1.00.190.20SPI1.00.80SGI1.0
aThecomplementoftheCanberrametric(1.0–C)isusedastheindexofsimilarity.Notethatthematrixissymmetricalaboutthediagonal.4.2.3ClassificationClassificationisoftenthefinalgoalofcommunityanalyses,sothatecologistscanassignnamestoclassesorgroups.Classificationisespeciallyimportantinappliedecologyandconservation.Ecologistshaveclassifiedplantcommunitiesonthebasisofmanydifferentcharacteristics,andsincetheadventofcomputers,therehasbeenagrowingliteratureonobjective,quantitativemethodsof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建三明城发康养产业有限公司招聘工作人员3人(公共基础知识)测试题附答案
- 2026年通化医药健康职业学院单招(计算机)考试备考题库附答案
- 2026年上海电力大学单招(计算机)考试参考题库附答案
- 2026年沧州航空职业学院单招(计算机)考试备考题库附答案
- 2026年黔南民族幼儿师范高等专科学校单招(计算机)测试备考题库附答案
- 2026年湖南网络工程职业学院单招(计算机)考试备考题库附答案
- 2025年秋季中国石油大庆炼化分公司高校毕业生招聘(黑龙江)(公共基础知识)测试题附答案
- 钦州产业园区急需紧缺人才招聘31人参考题库附答案
- 2025年益阳师范高等专科学校单招(计算机)测试模拟题库附答案
- 2025重庆云阳县教育事业单位面向应届毕业生考核招聘65人(公共基础知识)综合能力测试题附答案
- 2025年海洋平台维护五年优化报告
- 辽宁省沈阳市皇姑区2024-2025学年七年级上学期期末道德与法治试卷
- 辽宁省盘锦市兴隆台区2024-2025学年九年级上学期期末数学试题
- 2026年动物检疫检验员考试试题题库及答案
- 2025年广西公需科目答案6卷
- GB/T 23720.3-2025起重机司机培训第3部分:塔式起重机
- GB/T 7129-2001橡胶或塑料软管容积膨胀的测定
- GB/T 35347-2017机动车安全技术检测站
- GB/T 14413-1993船用舷窗
- 急性呼吸窘迫综合征
- 危险化学危险品及危险工艺课件
评论
0/150
提交评论