版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论基础(Ⅲ)2009年3月山西大学数学科学学院大数定律&中心极限定理1知识拓展山西大学数学科学学院大数定律&中心极限定理2一、多维随机变量(随机向量)二、多维随机变量的特征数三、大数定理四、中心极限定理相关概念山西大学数学科学学院大数定律&中心极限定理3n维随机变量(随机向量)的形式:n维随机变量的联合分布函数:二维离散型随机变量的联合分布列:二维连续型随机变量的联合分布函数:二维随机变量的特征数山西大学数学科学学院大数定律&中心极限定理4协方差相关系数二维随机变量的协方差山西大学数学科学学院大数定律&中心极限定理5设(X,Y)是一个二维随机变量,如果存在,则称其为X与Y的协方差,或称为X与Y的相关(中心)矩,并记为特别地:协方差>0,称X与Y正相关,即同增同减;协方差<0,称X与Y负相关,即增减相反;协方差=0,称X与Y不(线性)相关。二维随机变量的协方差山西大学数学科学学院大数定律&中心极限定理6协方差的性质:Cov(X,Y)=E(XY)-E(X)E(Y);若X与Y独立,则Cov(X,Y)=0,反之亦然;Cov(X,Y)=Cov(Y,X);Cov(X,a)=0,a为常数;Cov(aX,bY)=abCov(Y,X),a,b为常数;Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z);Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y),Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)。二维随机变量的相关系数山西大学数学科学学院大数定律&中心极限定理7设(X,Y)是一个二维随机变量,且Var(X)>0,Var(Y)>0。则称为X与Y的相关系数。相关系数与协方差是同符号的,即同正同负,所以从相关系数的取值也可以反映X与Y的(线性)相关性。相关系数可以看做是X与Y标准化后的协方差。二维随机变量的相关系数山西大学数学科学学院大数定律&中心极限定理8相关系数的性质:有界:;不等式关系:;相关系数为的充分必要条件是X与Y几乎处处有线性关系,即存在a(不为0)和b,使得P(Y=aX+b)=1。其中当Corr(X,Y)=1时,有a>0;当Corr(X,Y)=1,有a<0。独立与不相关山西大学数学科学学院大数定律&中心极限定理9一般场合,独立必然导致不相关,但不相关推不出独立。但在正态场合下两者等价。TH.在二维正态分布场合,不相关与独立是等价的。伯努利大数定律山西大学数学科学学院大数定律&中心极限定理10设为n重伯努利试验中事件A发生的次数,p为每次实验中A出现的概率,则对任意的,有注解:只要试验次数足够大,事件A发生的频率就会与其概率真值相当的接近,偏离的机会很小,可以认为是0。大数定律的一般形式山西大学数学科学学院大数定律&中心极限定理11设有一随机变量序列{Xn},若对任意的,有则称该随机变量序列服从大数定律。注解:只要n充分大,随机变量“平均值”与理论“期望”可以无限接近。大数定律的不同形式山西大学数学科学学院大数定律&中心极限定理121、切比雪夫大数定律设{Xn}为一列两两不相关的随机变量序列,若每个Xi的方差存在,且有共同的上界,则{Xn}服从大数定律。2、马尔科夫大数定律(条件)随机变量序列{Xn},若满足3、辛钦大数定律设{Xn}为一独立同分布的随机变量序列,若Xi的期望存在,则{Xn}服从大数定律。中心极限定理&大数定律的关系山西大学数学科学学院大数定律&中心极限定理13大数定律讨论的是多个随机变量的平均(1)的渐进性质,中心极限定理讨论的是随机变量和(2)的极限分布。(1)(2)独立同分布的中心极限定理山西大学数学科学学院大数定律&中心极限定理141、林德贝格-勒维中心极限定理设{Xn}是独立同分布的随机变量序列,且记则对任意实数y,有注解:独立随机变量和序列标准化后的分布是渐进正态的。二项分布的正态近似山西大学数学科学学院大数定律&中心极限定理152、棣莫弗-拉普拉斯极限定理设n重伯努利试验中,事件A在每次实验中出现的概率是p(0<p<1),记为n次试验中事件A出现的次数,且记则,对任意实数y,有注解:二项分布(n个独立同分布事件和)是渐进正态的。林德贝格条件山西大学数学科学学院大数定律&中心极限定理16林德贝格条件设{Xn}是一个相互独立的的随机变量序列,他们具有有限的数学期望和方差:
,则随机变量的和的期望方差分别为:若诸Xi为连续随机变量时,记其密度函数为pi(x)。如果对任意的,有 *独立不同分布的中心极限定理1山西大学数学科学学院大数定律&中心极限定理173、林德贝格中心极限定理设{Xn}是相互独立的的随机变量序列,如果满足林德贝格条件,即对任意,有则对任意的x,有
注解:n个独立不同分布事件的和是渐进正态的,只要它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哮喘患者职业暴露管理路径
- 员工健康促进与医疗资源下沉实践
- 员工绩效与医院社会责任关联
- 后疫情时代线上知情同意的规范化发展
- 合理用药与处方审核技能提升
- 2026届陕西省咸阳市旬邑中学、彬州市阳光中学、彬州中学生物高二上期末质量跟踪监视试题含解析
- 双相障碍自杀风险沟通管理技能
- 2026届辽宁大连市普兰店区高一生物第一学期期末质量跟踪监视模拟试题含解析
- 河南省濮阳市华龙区濮阳一中2026届高三生物第一学期期末调研试题含解析
- 教师礼仪与文化修养全套课件
- 2025-2026学年人教版七年级上册道德与法治期末试卷(含答案和解析)
- 无锡公建工程质量检测有限公司2025年下半年公开招聘专业技术人员备考题库及答案详解一套
- 北京市平谷区政务服务中心综合工作人员招聘笔试备考题库及答案解析
- 2026年高级会计师面试题及答案解析
- 湖南省邵阳市2025-2026学年高二历史上学期期末模拟卷(试卷及全解全析)
- 安全注射标准2025
- 人教版九年级化学导学案全册
- 国开电大商业银行经营管理形考作业3参考答案
- 陈独秀早期社会建设思想的形成、渊源及启迪,东方哲学论文
- GB/T 1865-2009色漆和清漆人工气候老化和人工辐射曝露滤过的氙弧辐射
- 2023年自考高级财务会计真题和答案
评论
0/150
提交评论