2023届山东省乐陵市九年级数学第一学期期末经典模拟试题含解析_第1页
2023届山东省乐陵市九年级数学第一学期期末经典模拟试题含解析_第2页
2023届山东省乐陵市九年级数学第一学期期末经典模拟试题含解析_第3页
2023届山东省乐陵市九年级数学第一学期期末经典模拟试题含解析_第4页
2023届山东省乐陵市九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y22.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.3.点关于原点的对称点是A. B. C. D.4.在中,,,则的值为()A. B. C. D.5.对于反比例函数,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小6.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.7.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇8.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.9.如图,在平面直角坐标系中,已知点的坐标是,点是曲线上的一个动点,作轴于点,当点的橫坐标逐渐减小时,四边形的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先减小后增大10.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为_____.12.如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为_________13.圆锥的母线长是5cm,底面半径长是3cm,它的侧面展开图的圆心角是____.14.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为_____.15.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:__________.16.当_____时,在实数范围内有意义.17.已知平行四边形中,,且于点,则_____.18.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是_____.三、解答题(共66分)19.(10分)如图是由24个小正方形组成的网格图,每一个正方形的顶点都称为格点,的三个顶点都是格点.请按要求完成下列作图,每个小题只需作出一个符合条件的图形.(1)在图1网格中找格点,作直线,使直线平分的面积;(2)在图2网格中找格点,作直线,使直线把的面积分成两部分.20.(6分)将矩形纸片沿翻折,使点落在线段上,对应的点为,若,求的长.21.(6分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.22.(8分)已知关于x的一元二次方程2x2+(2k+1)x+k=1.(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围.23.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.24.(8分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.25.(10分)如图1,直线y=kx+1与x轴、y轴分别相交于点A、B,将△AOB绕点A顺时针旋转,使AO落在AB上,得到△ACD,将△ACD沿射线BA平移,当点D到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤2,2<m≤a时,函数的解析式不同)(1)填空:a=,k=;(2)求S关于m的解析式,并写出m的取值范围.26.(10分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由;(2)若AC=6,CD=5,求FG的长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<,

∴y1>0,y1<y3<0;

故有y1>y3>y1.

故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.

2、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.3、C【解析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).4、C【解析】在中,先求出的度数,再根据特殊角的三角函数值即可得出答案.【详解】,=故选C.【点睛】本题考查了锐角三角函数,熟练掌握特殊角的三角函数值是解题的关键.5、C【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6、C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴,即,∴y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.7、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.9、C【分析】设点P的坐标,表示出四边形OAPB的面积,由反比例函数k是定值,当点P的横坐标逐渐减小时,四边形OAPB的面积逐渐减小.【详解】点A(0,2),则OA=2,

设点,则,

∵为定值,

∴随着点P的横坐标的逐渐减小时,四边形AONP的面积逐渐减小

故选:C.【点睛】考查反比例函数k的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.10、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:

共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,

∴两次都摸到颜色相同的球的概率为.

故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.二、填空题(每小题3分,共24分)11、1+【分析】利用二次函数图象上点的坐标特征可求出点A、B、D的坐标,进而可得出OD、OA、OB,根据圆的性质可得出OM的长度,在Rt△COM中,利用勾股定理可求出CO的长度,再根据CD=CO+OD即可求出结论.【详解】当x=0时,y=(x﹣1)2﹣4=﹣1,∴点D的坐标为(0,﹣1),∴OD=1;当y=0时,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴点A的坐标为(﹣1,0),点B的坐标为(0,1),∴AB=4,OA=1,OB=1.连接CM,则CM=AB=2,OM=1,如图所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案为1+.【点睛】先根据二次函数与一元二次方程的关系,勾股定理,熟练掌握二次函数与一元二次方程的关系是解答本题的关键.12、2【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因为正方形ABCD的边长为1,则MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案为:2.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13、216°.【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、【分析】先求出∠ACD=30°,进而可算出CE、AD,再算出△AEC的面积.【详解】如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=,∴CE=,DE=,AD=,∴.故答案为:.【点睛】本题考查了旋转的性质、矩形的性质、直角三角形中30度角的性质,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.15、【解析】根据向上一面可能出现的有6种情况,其中出现数字为奇数的有3种情况,利用概率公式进行计算即可得.【详解】掷一次正六面体骰子向上一面的数字有1、2、3、4、5、6共6种可能,其中奇数有1,3,5共3个,∴掷一次朝上一面的数字是奇数的概率是=,故答案为:.【点睛】本题考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.16、x≥1且x≠1【分析】二次根式及分式有意义的条件:被开方数为非负数,分母不为1,据此解答即可.【详解】∵有意义,∴x≥1且﹣1≠1,∴x≥1且x≠1时,在实数范围内有意义,故答案为:x≥1且x≠1【点睛】本题考查二次根式和分式有意义的条件,要使二次根式有意义,被开方数为非负数;要使分式有意义分母不为1.17、60°【分析】根据平行四边形性质可得,再根据等腰三角形性质和三角形内角和求出,最后根据直角三角形两锐角互余即可解答.【详解】解:四边形是平行四边形,,,∴,,∴,,,故答案为:60°.【点睛】本题考查平行四边形的判定、等腰三角形的性质、直角三角形的性质等知识,解题的关键是利用平行四边形的性质以及等腰三角形的性质求出,属于中考常考题型.18、【解析】由于函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与与正方形ABCD有公共点的临界点,求出即可得解.【详解】∵点O是边长为1的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(-1,1),∵函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x-h)1,得1=(-1-h)1∴h=0(舍)或h=-1;把点A坐标代入y=(x-h)1,得1=(1-h)1∴h=0(舍)或h=1.函数y=(x-h)1的图象与正方形ABCD有公共点,则h的取值范围是-1≤h≤1.故答案为-1≤h≤1.【点睛】本题考查二次函数图象与正方形交点的问题,需要先判断抛物线的开口方向,顶点位置及抛物线与正方形二者的临界交点,需要明确临界位置及其求法.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)根据中线的定义画出中线即可平分三角形面积;

(2)根据同高且底边长度比为1:2的两个三角形的面积比为1:2寻找点,同时利用相似三角形对应边的比相等可找出格点.【详解】解:(1)如图①,由网格易知BD=CD,所以S△ABD=S△ADC,作直线AD即为所求;(2)如图②,取格点E,由AC∥BE可得,(或),∴S△ACN=2S△ABN(或S△ABM=2S△ACM,),∴作直线AE即为所求.(选取其中一条即可)【点睛】本题考查作图-应用与设计,三角形的面积,相似的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、10【分析】设,根据三角函数表示出其它线段,最终表示出BE、AB,然后在三角形ABE中根据勾股定理即可求出AB.【详解】解:∵是矩形,沿翻折∴,BE=EF,∠AFE=∠B=∠D=,∴∠AFD+∠DAF=∠AFD+∠EFC=,∴∠DAF=∠EFC,∴,设,则∴,∴,∴AD=8k,∴,∴,∴,∴,∵,∴,∴,∴.【点睛】此题考查了折叠的性质、矩形的性质、三角函数的定义以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.21、(1)证明见解析;(2)①;②证明见解析.【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长.从而,由△AMN∽△AGF和△AMN的MN边上高,△AGF的GF边上高,GF=,根据MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1),从而得出结论.【详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴,同理在△ACQ和△APE中,,∴;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得,∴,∴,∵GF2=CF•BG,∴MN2=DM•EN.【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.22、(1)见解析;(2)【分析】(1)根据根的判别式判断即可△>1,有两个实数根;△=1,有一个实数根;△<1,无实数根.(2)根据求根公式求出两个根,根据一个根是正数判断k的取值范围即可.【详解】(1)证明:由题意,得∵,∴方程总有两个实数根.(2)解:由求根公式,得,.∵方程有一个根是正数,∴.∴.【点睛】此题主要考查了一元二次方程根的判别式及求根公式,熟记概念是解题的关键.23、(1)见详解;(2)12【分析】(1)由角平分线性质,得到∠ABD=∠CBD,由EF是BD的中垂线,则BE=DE,则∠CBD=∠EDB,则∠ABD=∠EDB,即可得到答案;(2)先证明四边形BEDF是菱形,由DE∥AB,得到DE=CD=3,即可求出周长;【详解】(1)证明:∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,∵EF是BD的中垂线,∴BE=DE,BF=DF,∴∠CBD=∠EDB,∴∠ABD=∠EDB,∴DE∥AB;(2)解:与(1)同理,可证DF∥BC,∴四边形BEDF是平行四边形,∵BE=DE,∴四边形BEDF是菱形,∵AB=BC,DE∥AB,∴∠C=∠ABC=∠DEC,∴DE=CD=3,∴菱形BEDF的周长为:.【点睛】本题考查了菱形的判定和性质,垂直平分线的性质,角平分线的性质,以及等腰三角形的性质,解题的关键是熟练掌握所学的性质,从而正确的进行推导.24、(1)见解析;(2)【分析】(1)连接OC,利用等腰三角形的三线合一性质证明即可.(2)利用30°的特殊三角形的性质求出即可.【详解】(1)证明:连接.,是边的中点,.又点在上,与相切.图①(2)∵∠AOB=120°,OA=OB,∴∠A=30°,又∵OD=6∴OA=12∴AC=,AB=∵DE是三角形OAB的中位线,∴DE=.图②【点睛】本题考查圆与三角形的结合,关键在于熟悉基础知识.25、(1)a=4,k=﹣;(2)S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【分析】(1)先由函数图象变化的特点,得出m=2时的变化是三角形C点与A点重合时,从而得AC的值,进而得点A坐标,易求得点B坐标,从而问题易解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论